Abstract
The model of camera that was used to capture a particular photographic image (model attribution) is typically inferred from high-frequency model-specific artifacts present within the image. Model anonymization is the process of transforming these artifacts such that the apparent capture model is changed. We propose a conditional adversarial approach for learning such transformations. In contrast to previous works, we cast model anonymization as the process of transforming both high and low spatial frequency information. We augment the objective with the loss from a pre-trained dual-stream model attribution classifier, which constrains the generative network to transform the full range of artifacts. Quantitative comparisons demonstrate the efficacy of our framework in a restrictive non-interactive black-box setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We refer the reader to [25] for details on this denoising filter.
- 3.
Recall that all anonymization methods are trained on \((x,y)\sim q_{\mathrm {data}}(x,\mathbb {N}_{6})\).
- 4.
Note that \(\mathbb {N}_{12} \setminus \mathbb {N}_{6}=\{7,\dots ,12\}\).
References
Arandjelović, R., Zisserman, A.: Object discovery with a copy-pasting GAN. arXiv preprint arXiv:1905.11369 (2019)
Barni, M., Kallas, K., Nowroozi, E., Tondi, B.: On the transferability of adversarial examples against CNN-based image forensics. In: ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8286–8290. IEEE (2019)
Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10. ACM (2016)
Bayar, B., Stamm, M.C.: Design principles of convolutional neural networks for multimedia forensics. Electron. Imaging 2017(7), 77–86 (2017)
Bayar, B., Stamm, M.C.: Towards open set camera model identification using a deep learning framework. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2007–2011. IEEE (2018)
Bayram, S., Sencar, H., Memon, N., Avcibas, I.: Source camera identification based on CFA interpolation. In: IEEE International Conference on Image Processing 2005, vol. 3, p. III-69. IEEE (2005)
Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6228–6237 (2018)
Böhme, R., Kirchner, M.: Counter-forensics: attacking image forensics. In: Sencar, H., Memon, N. (eds.) Digital Image Forensics, pp. 327–366. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0757-7_12
Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps toward camera model identification with convolutional neural networks. IEEE Signal Process. Lett. 24(3), 259–263 (2016)
Bonettini, N., et al.: Fooling PRNU-based detectors through convolutional neural networks. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 957–961. IEEE (2018)
Bonettini, N., Güera, D., Bondi, L., Bestagini, P., Delp, E.J., Tubaro, S.: Image anonymization detection with deep handcrafted features. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2304–2308. IEEE (2019)
Caldwell, M., Andrews, J.T.A., Tanay, T., Griffin, L.D.: AI-enabled future crime. Crime Sci. 9(1), 1–13 (2020). https://doi.org/10.1186/s40163-020-00123-8
Chen, C., Stamm, M.C.: Camera model identification framework using an ensemble of demosaicing features. In: 2015 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2015)
Chen, C., Zhao, X., Stamm, M.C.: MISLGAN: an anti-forensic camera model falsification framework using a generative adversarial network. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 535–539. IEEE (2018)
Chen, C., Zhao, X., Stamm, M.C.: Generative adversarial attacks against deep-learning-based camera model identification. IEEE Trans. Inf. Forensics Secur. (2019)
Chen, T., Zhai, X., Ritter, M., Lucic, M., Houlsby, N.: Self-supervised GANs via auxiliary rotation loss. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12154–12163 (2019)
Chesney, B., Citron, D.: Deep fakes: a looming challenge for privacy, democracy, and national security. Calif. L. Rev. 107, 1753 (2019)
Choi, K.S., Lam, E.Y., Wong, K.K.: Source camera identification by JPEG compression statistics for image forensics. In: TENCON 2006 – 2006 IEEE Region 10 Conference, pp. 1–4. IEEE (2006)
Choi, K.S., Lam, E.Y., Wong, K.K.: Source camera identification using footprints from lens aberration. In: Digital Photography II, vol. 6069, pp. 172–179 (2006)
Cozzolino, D., Thies, J., Rössler, A., Nießner, M., Verdoliva, L.: SpoC: spoofing camera fingerprints. arXiv preprint arXiv:1911.12069 (2019)
Dirik, A.E., Karaküçük, A.: Forensic use of photo response non-uniformity of imaging sensors and a counter method. Opt. Express 22(1), 470–482 (2014)
Dirik, A.E., Sencar, H.T., Memon, N.: Analysis of seam-carving-based anonymization of images against PRNU noise pattern-based source attribution. IEEE Trans. Inf. Forensics Secur. 9(12), 2277–2290 (2014)
Entrieri, J., Kirchner, M.: Patch-based desynchronization of digital camera sensor fingerprints. Electron. Imaging 2016(8), 1–9 (2016)
Filler, T., Fridrich, J., Goljan, M.: Using sensor pattern noise for camera model identification. In: 2008 15th IEEE International Conference on Image Processing, pp. 1296–1299. IEEE (2008)
Fridrich, J.: Digital image forensics. IEEE Signal Process. Mag. 26(2), 26–37 (2009)
Fridrich, J.: Sensor defects in digital image forensic. In: Sencar, H., Memon, N. (eds.) Digital Image Forensics, pp. 179–218. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0757-7_6
Geirhos, R., et al.: Shortcut learning in deep neural networks. arXiv preprint arXiv:2004.07780 (2020)
Geradts, Z.J., Bijhold, J., Kieft, M., Kurosawa, K., Kuroki, K., Saitoh, N.: Methods for identification of images acquired with digital cameras. In: Enabling Technologies for Law Enforcement and Security, vol. 4232, pp. 505–512. International Society for Optics and Photonics (2001)
Gloe, T.: Feature-based forensic camera model identification. In: Shi, Y.Q., Katzenbeisser, S. (eds.) Transactions on Data Hiding and Multimedia Security VIII. LNCS, vol. 7228, pp. 42–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31971-6_3
Gloe, T., Böhme, R.: The ‘Dresden Image Database’ for benchmarking digital image forensics. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1584–1590. ACM (2010)
Gloe, T., Kirchner, M., Winkler, A., Böhme, R.: Can we trust digital image forensics? In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 78–86. ACM (2007)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Gragnaniello, D., Marra, F., Poggi, G., Verdoliva, L.: Analysis of adversarial attacks against CNN-based image forgery detectors. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 967–971. IEEE (2018)
Güera, D., Wang, Y., Bondi, L., Bestagini, P., Tubaro, S., Delp, E.J.: A counter-forensic method for CNN-based camera model identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 28–35 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Holst, G.C.: CCD arrays, cameras, and displays, 2nd edn. Society of Photo Optical (1998)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karaküçük, A., Dirik, A.E.: Adaptive photo-response non-uniformity noise removal against image source attribution. Digit. Investig. 12, 66–76 (2015)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)
Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 1, pp. 709–712. IEEE (2004)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kirchner, M., Gloe, T.: Forensic camera model identification. In: Handbook of Digital Forensics of Multimedia Data and Devices, pp. 329–374 (2015)
Kuzin, A., Fattakhov, A., Kibardin, I., Iglovikov, V.I., Dautov, R.: Camera model identification using convolutional neural networks. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 3107–3110. IEEE (2018)
Lukáš, J., Fridrich, J., Goljan, M.: Detecting digital image forgeries using sensor pattern noise. In: Security, Steganography, and Watermarking of Multimedia Contents VIII, vol. 6072, p. 60720Y. International Society for Optics and Photonics (2006)
Lukáš, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)
Mandelli, S., Bondi, L., Lameri, S., Lipari, V., Bestagini, P., Tubaro, S.: Inpainting-based camera anonymization. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1522–1526. IEEE (2017)
Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)
Marra, F., Gragnaniello, D., Verdoliva, L.: On the vulnerability of deep learning to adversarial attacks for camera model identification. Sig. Process. Image Commun. 65, 240–248 (2018)
Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: Evaluation of residual-based local features for camera model identification. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 11–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_2
Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: A study of co-occurrence based local features for camera model identification. Multimed. Tools Appl. 76(4), 4765–4781 (2016). https://doi.org/10.1007/s11042-016-3663-0
Mathieu, M.F., Zhao, J.J., Zhao, J., Ramesh, A., Sprechmann, P., LeCun, Y.: Disentangling factors of variation in deep representation using adversarial training. In: Advances in Neural Information Processing Systems, pp. 5040–5048 (2016)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Perarnau, G., Van De Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. arXiv preprint arXiv:1611.06355 (2016)
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
The IEEE Signal Processing Society: IEEE Signal Processing Cup 2018: Forensic Camera Model Identification Challenge (2018). https://www.kaggle.com/c/sp-society-camera-model-identification
Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
Tuama, A., Comby, F., Chaumont, M.: Source camera model identification using features from contaminated sensor noise. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 83–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31960-5_8
Tuama, A., Comby, F., Chaumont, M.: Camera model identification with the use of deep convolutional neural networks. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2016)
Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7939–7947 (2018)
Xu, G., Shi, Y.Q.: Camera model identification using local binary patterns. In: 2012 IEEE International Conference on Multimedia and Expo, pp. 392–397. IEEE (2012)
Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning face age progression: a pyramid architecture of GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 31–39 (2018)
Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems, pp. 465–476 (2017)
Acknowledgments
JTAA is supported by the Royal Academy of Engineering (RAEng) and the Office of the Chief Science Adviser for National Security under the UK Intelligence Community Postdoctoral Fellowship Programme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Andrews, J.T.A., Zhang, Y., Griffin, L.D. (2020). Conditional Adversarial Camera Model Anonymization. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12538. Springer, Cham. https://doi.org/10.1007/978-3-030-66823-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-66823-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66822-8
Online ISBN: 978-3-030-66823-5
eBook Packages: Computer ScienceComputer Science (R0)