Abstract
Manual visual inspection performed by certified inspectors is still the main form of road pothole detection. This process is, however, not only tedious, time-consuming and costly, but also dangerous for the inspectors. Furthermore, the road pothole detection results are always subjective, because they depend entirely on the individual experience. Our recently introduced disparity (or inverse depth) transformation algorithm allows better discrimination between damaged and undamaged road areas, and it can be easily deployed to any semantic segmentation network for better road pothole detection results. To boost the performance, we propose a novel attention aggregation (AA) framework, which takes the advantages of different types of attention modules. In addition, we develop an effective training set augmentation technique based on adversarial domain adaptation, where the synthetic road RGB images and transformed road disparity (or inverse depth) images are generated to enhance the training of semantic segmentation networks. The experimental results demonstrate that, firstly, the transformed disparity (or inverse depth) images become more informative; secondly, AA-UNet and AA-RTFNet, our best performing implementations, respectively outperform all other state-of-the-art single-modal and data-fusion networks for road pothole detection; and finally, the training set augmentation technique based on adversarial domain adaptation not only improves the accuracy of the state-of-the-art semantic segmentation networks, but also accelerates their convergence.
Source Code and Dataset:
R. Fan and H. Wang—These authors contributed equally to this work and are therefore joint first authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mathavan, S., Kamal, K., Rahman, M.: A review of three-dimensional imaging technologies for pavement distress detection and measurements. IEEE Trans. Intell. Transp. Syst. 16(5), 2353–2362 (2015)
Fan, R., Ozgunalp, U., Hosking, B., Liu, M., Pitas, I.: Pothole detection based on disparity transformation and road surface modeling. IEEE Trans. Image Process. 29, 897–908 (2019)
Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., Fieguth, P.: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inf. 29(2), 196–210 (2015)
Majendie, M.: Dani king: ‘it was just a freak accident but I thought I was going to die’. Technical report, Independent, June 2015
Fan, R., Liu, M.: Road damage detection based on unsupervised disparity map segmentation. IEEE Trans. Intell. Transp. Syst. 21, 4906–4911 (2019)
Devine, R.: City of San Diego asking residents to report potholes. Technical report, NBC San Diego, January 2017
News, B.: Government to pledge billions for filling potholes. Technical report, BBC News, March 2020
Fan, R., Jiao, J., Pan, J., Huang, H., Shen, S., Liu, M.: Real-time dense stereo embedded in a UAV for road inspection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 535–543. IEEE (2019)
Leo, M., Furnari, A., Medioni, G.G., Trivedi, M., Farinella, G.M.: Deep learning for assistive computer vision. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 0–0, (2018)
Rover, J.L.: Pothole detection technology research announced by jaguar land rover
Baraniuk, C.: Ford developing pothole alert system for drivers, February 2017
Jahanshahi, M.R., Jazizadeh, F., Masri, S.F., Becerik-Gerber, B.: Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor. J. Comput. Civ. Eng. 27(6), 743–754 (2013)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3684–3692 (2018)
Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-SCNN: gated shape CNNs for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5229–5238 (2019)
Wang, H., Fan, R., Sun, Y., Liu, M.: Applying surface normal information in drivable area and road anomaly detection for ground mobile robots. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020). (To be published)
Fan, R., Wang, H., Cai, P., Liu, M.: SNE-RoadSeg: incorporating surface normal information into semantic segmentation for accurate freespace detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 340–356. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_21
Hazirbas, C., Ma, L., Domokos, C., Cremers, D.: FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 213–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_14
Wang, W., Neumann, U.: Depth-aware CNN for RGB-D segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 135–150 (2018)
Sun, Y., Zuo, W., Liu, M.: RTFNet: RGB-thermal fusion network for semantic segmentation of urban scenes. IEEE Robot. Autom. Lett. 4(3), 2576–2583 (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Yuan, Y., Wang, J.: OCNet: object context network for scene parsing. arXiv preprint arXiv:1809.00916 (2018)
Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 603–612 (2019)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Fan, R., Ai, X., Dahnoun, N.: Road surface 3D reconstruction based on dense subpixel disparity map estimation. IEEE Trans. Image Process. 27(6), 3025–3035 (2018)
Labayrade, R., Aubert, D.: A single framework for vehicle roll, pitch, yaw estimation and obstacles detection by stereovision. In: IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No. 03TH8683), pp. 31–36. IEEE (2003)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Acknowledgements
This work was supported by the National Natural Science Foundation of China, under grant No. U1713211, Collaborative Research Fund by Research Grants Council Hong Kong, under Project No. C4063-18G, and the Research Grant Council of Hong Kong SAR Government, China, under Project No. 11210017, awarded to Prof. Ming Liu.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Fan, R., Wang, H., Bocus, M.J., Liu, M. (2020). We Learn Better Road Pothole Detection: From Attention Aggregation to Adversarial Domain Adaptation. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12538. Springer, Cham. https://doi.org/10.1007/978-3-030-66823-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-66823-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66822-8
Online ISBN: 978-3-030-66823-5
eBook Packages: Computer ScienceComputer Science (R0)