Abstract
Predicting depth map from a single RGB image is beneficial for many three-dimensional applications. Although recent monocular depth estimation methods have achieved impressive accuracy, the preference on high-level features or low-level features prevents them from balancing sharpness and fidelity of depth maps. In this work, we propose a dense connection mechanism that connects diverse sub-depth maps produced by the sub-predictors to the final depth map to contribute information from features at different levels. Besides, two kinds of diversity enhancement devices are proposed to increase the number and diversity of the sub-depth maps collected by the dense connection mechanism. Experimental results on KITTI and NYU Depth V2 datasets shows that, by fusing the dense connection mechanism and diversity enhancement devices, our proposed method achieves state-of-the-art accuracy and predicts sharp depth maps that restore reliable object structures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alhashim, I., Wonka, P.: High quality monocular depth estimation via transfer learning. arXiv preprint arXiv:1812.11941 (2018)
Cao, Y., Wu, Z., Shen, C.: Estimating depth from monocular images as classification using deep fully convolutional residual networks. IEEE Trans. Circ. Syst. Video Technol. 28(11), 3174–3182 (2017)
Chakrabarti, A., Shao, J., Shakhnarovich, G.: Depth from a single image by harmonizing overcomplete local network predictions. In: Advances in Neural Information Processing Systems, pp. 2658–2666 (2016)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional Nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, R., Han, S., Xu, J., Su, H.: Point-based multi-view stereo network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1538–1547 (2019)
Chen, W., Yue, H., Wang, J., Wu, X.: An improved edge detection algorithm for depth map inpainting. Optics Lasers Eng. 55, 69–77 (2014)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Diaz, R., Marathe, A.: Soft labels for ordinal regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4738–4747 (2019)
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)
Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)
Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3828–3838 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: DeepMVS: learning multi-view stereopsis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2821–2830 (2018)
Karsch, K., Liu, C., Kang, S.B.: Depth transfer: depth extraction from video using non-parametric sampling. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2144–2158 (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Kuznietsov, Y., Stuckler, J., Leibe, B.: Semi-supervised deep learning for monocular depth map prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6647–6655 (2017)
Ladicky, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 89–96 (2014)
Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248. IEEE (2016)
Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: multi-scale local planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326 (2019)
Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: ACM SIGGRAPH 2004 Papers, pp. 689–694 (2004)
Li, J., Klein, R., Yao, A.: A two-streamed network for estimating fine-scaled depth maps from single RGB images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3372–3380 (2017)
Li, R., Xian, K., Shen, C., Cao, Z., Lu, H., Hang, L.: Deep attention-based classification network for robust depth prediction. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 663–678. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_41
Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2024–2039 (2015)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)
Pillai, S., Ambruş, R., Gaidon, A.: SuperDepth: self-supervised, super-resolved monocular depth estimation. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9250–9256. IEEE (2019)
Ren, H., El-khamy, M., Lee, J.: Deep robust single image depth estimation neural network using scene understanding. arXiv preprint arXiv:1906.03279 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Saxena, A., Sun, M., Ng, A.Y.: Make3D: learning 3D scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 824–840 (2008)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Xu, D., Ricci, E., Ouyang, W., Wang, X., Sebe, N.: Multi-scale continuous CRFs as sequential deep networks for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5354–5362 (2017)
Xu, D., Wang, W., Tang, H., Liu, H., Sebe, N., Ricci, E.: Structured attention guided convolutional neural fields for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3917–3925 (2018)
Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3684–3692 (2018)
Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent MVSNet for high-resolution multi-view stereo depth inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525–5534 (2019)
Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints of virtual normal for depth prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5684–5693 (2019)
Zhan, H., Garg, R., Saroj Weerasekera, C., Li, K., Agarwal, H., Reid, I.: Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 340–349 (2018)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)
Acknowledgement
This research was funded by National Natural Science Foundation of China (No. 61603020, No. 61620106012), and the Fundamental Research Funds for the Central Universities (No. YWF-20-BJ-J-923, No. YWF-19-BJ-J-355).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, J., Yue, H., Wu, X., Chen, W., Wen, C. (2020). Densely Connecting Depth Maps for Monocular Depth Estimation. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12538. Springer, Cham. https://doi.org/10.1007/978-3-030-66823-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-66823-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66822-8
Online ISBN: 978-3-030-66823-5
eBook Packages: Computer ScienceComputer Science (R0)