Skip to main content

Local Binary and Ternary Patterns Based Quantitative Texture Analysis for Assessment of IDH Genotype in Gliomas on Multi-modal MRI

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology (MLCN 2020, RNO-AI 2020)

Abstract

Radiomics based multivariate models are potentially valuable prognostic tool in IDH phenotyping in high-grade gliomas. Radiomics generally involves a set of the histogram and standard texture features based on co-occurrence matrix, run-length matrix, size zone matrix, gray tone matrix, and gray level dependence matrix as described by the Imaging Biomarker Standardization Initiative (IBSI). In this work, we introduce 3D local binary patterns (3D LBP) and local ternary patterns (3D LTP) based histogram features in addition to standard radiomics for capturing subtle phenotypic differences to characterize IDH genotype in high-grade gliomas. These textures are rotationally invariant and are robust to image noise as well as can capture the underlying local differences in the tissue architecture. On a dataset of 64 patients with high-grade glioma scanned at a single institution, we illustrate that LBP and LTP features perform at par with radiomics individually and when combined, could facilitate highest testing accuracy of 84.62% (AUROC: 0.78, sensitivity: 0.83 specificity: 0.86, f1-score: 0.83) using random forest classification. Clinical explainability is achieved via feature ranking and selection where the top 5 features are based on LBP and LTP histogram. Overall, our results illustrate that 3D LBP and LTP histogram features are crucial in creating tumor phenotypic signatures and could be included in the standard radiomics pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wank, M., et al.: Human glioma migration and infiltration properties as a target for personalized radiation medicine. Cancers 10(11), 456 (2018)

    Article  Google Scholar 

  2. Louis, D.N., et al.: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016)

    Article  Google Scholar 

  3. Houillier, C., et al.: IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75(17), 1560–1566 (2010)

    Article  Google Scholar 

  4. Jakola, A., et al.: Quantitative texture analysis in the prediction of IDH status in low-grade gliomas. J. Clin. Neurol. Neurosurg. 164, 114–120 (2017)

    Article  Google Scholar 

  5. Chougule, T., Shinde, S., Santosh, V., Saini, J., Ingalhalikar, M.: On Validating Multimodal MRI Based Stratification of IDH Genotype in High Grade Gliomas Using CNNs and Its Comparison to Radiomics. In: Mohy-ud-Din, H., Rathore, S. (eds.) RNO-AI 2019. LNCS, vol. 11991, pp. 53–60. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40124-5_6

    Chapter  Google Scholar 

  6. Gore, S., et al.: A review of radiomics and deep predictive modeling in glioma characterization. Academic Radiology, epub ahead of print (2020). https://doi.org/10.1010/j.acra.2020.06.016

  7. Zhao, G., et al.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  8. Ahonen, T., et al.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  9. Samal, A., et al.: Texture as the basis for individual tree identification. Inf. Sci. 176, 565–576 (2006)

    Article  Google Scholar 

  10. Avants, B.B., et al.: Advanced normalization tools (ANTS), Insight j 2.365, pp. 1–35 (2009)

    Google Scholar 

  11. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  12. Kamnitsas, K., et al.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 138–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14

  13. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  14. Bakas, S., et al.: Advancing the Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nature Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  15. Bakas, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge, arXiv preprint arXiv:1811.02629 (2018)

  16. Ojala, T., et al.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  17. Ojala, T., et al.: Multiresolution gray-scale and rotation invariant texture classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  18. Tan, X., et al.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  19. Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  20. https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf

  21. Pedregosa et al.: Scikit-learn: Machine Learning in Python. JMLR 12, 2825–2830 (2011)

    Google Scholar 

  22. Darst, B.F., et al.: Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet. 19, 65 (2018)

    Article  Google Scholar 

  23. Chaddad, A., et al.: Predicting the gene status and survival outcome of lower grade glioma patients with multimodal MRI features. IEEE Access 7, 75976–75984 (2019). https://doi.org/10.1109/ACCESS.2019.2920396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant Jagtap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gore, S., Chougule, T., Saini, J., Ingalhalikar, M., Jagtap, J. (2020). Local Binary and Ternary Patterns Based Quantitative Texture Analysis for Assessment of IDH Genotype in Gliomas on Multi-modal MRI. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics