Skip to main content

AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

This paper reviews the AIM 2020 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor \(\times \)4 based on a set of prior examples of low and corresponding high resolution images. The goal is to devise a network that reduces one or several aspects such as runtime, parameter count, FLOPs, activations, and memory consumption while at least maintaining PSNR of MSRResNet. The track had 150 registered participants, and 25 teams submitted the final results. They gauge the state-of-the-art in efficient single image super-resolution.

K. Zhang, M. Danelljan, Y. Li and R. Timofte were the challenge organizers, while the other authors participated in the challenge.

Appendix A contains the authors’ teams and affiliations. AIM webpage: https://data.vision.ee.ethz.ch/cvl/aim20/

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017

    Google Scholar 

  2. Bahat, Y., Michaeli, T.: Explorable super resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  3. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. In: Advances in Neural Information Processing Systems, pp. 284–293 (2019)

    Google Scholar 

  4. Cai, H., Gan, C., Han, S.: Once for all: Train one network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791 (2019)

  5. Cai, Y., et al.: Learning delicate local representations for multi-person pose estimation. arXiv preprint arXiv:2003.04030 (2020)

  6. Chen, S., Huang, K., Claesen, L., Li, B., Xiong, D., Jiang, H.: Adaptive hybrid composition based super-resolution network via fine-grained channel pruning. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 119–135. Springer, Cham (2020)

    Google Scholar 

  7. Ding, X., Ding, G., Guo, Y., Han, J.: Centripetal SGD for pruning very deep convolutional networks with complicated structure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4943–4953 (2019)

    Google Scholar 

  8. Ding, X., Guo, Y., Ding, G., Han, J.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  9. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  10. Efrat, N., Glasner, D., Apartsin, A., Nadler, B., Levin, A.: Accurate blur models vs. image priors in single image super-resolution. In: IEEE International Conference on Computer Vision, pp. 2832–2839 (2013)

    Google Scholar 

  11. El Helou, M., et al.: AIM 2020: scene relighting and illumination estimation challenge. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 499–518. Springer, Cham (2020)

    Google Scholar 

  12. Fuoli, D., et al.: AIM 2020 challenge on video extreme super-resolution: methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 1253, pp. xx–yy. Springer, Cham (2020)

    Google Scholar 

  13. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)

    Google Scholar 

  14. Gu, S., Timofte, R., Van Gool, L.: Multi-bin trainable linear unit for fast image restoration networks. arXiv preprint arXiv:1807.11389 (2018)

  15. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  16. Howard, A., et al.: Searching for mobilenetv3. arXiv preprint arXiv:1905.02244 (2019)

  17. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  18. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: ACM Multimedia (ACM MM) (2019)

    Google Scholar 

  19. Ignatov, A., Timofte, R., et al.: AIM 2020 challenge on learned image signal processing pipeline. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 152–170. Springer, Cham (2020)

    Google Scholar 

  20. Ignatov, A., Timofte, R., et al.: AIM 2020 challenge on rendering realistic bokeh. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 213–228. Springer, Cham (2020)

    Google Scholar 

  21. Jeon, G.W., Choi, J.H., Kim, J.H., Lee, J.S.: LarvaNet: Hierarchical super-resolution via multi-exit architecture. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 73–86. Springer, Cham (2020)

    Google Scholar 

  22. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition, June 2016

    Google Scholar 

  23. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  24. Lefkimmiatis, S.: Universal denoising networks: a novel CNN architecture for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3204–3213 (2018)

    Google Scholar 

  25. Li, Y., Gu, S., Gool, L.V., Timofte, R.: Learning filter basis for convolutional neural network compression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5623–5632 (2019)

    Google Scholar 

  26. Li, Y., Gu, S., Mayer, C., Gool, L.V., Timofte, R.: Group sparsity: the hinge between filter pruning and decomposition for network compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8018–8027 (2020)

    Google Scholar 

  27. Li, Y., Gu, S., Zhang, K., Van Gool, L., Timofte, R.: DHP: differentiable meta pruning via hypernetworks. arXiv preprint arXiv:2003.13683 (2020)

  28. Li, Y., Dong, X., Wang, W.: Additive powers-of-two quantization: an efficient non-uniform discretization for neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  29. Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., Huang, T.S.: Robust single image super-resolution via deep networks with sparse prior. IEEE Trans. Image Process. 25(7), 3194–3207 (2016)

    Article  MathSciNet  Google Scholar 

  30. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  31. Liu, J., Tang, J., Wu, G.: Residual feature distillation network for lightweight image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 41–55. Springer, Cham (2020)

    Google Scholar 

  32. Liu, J., Zhang, W., Tang, Y., Tang, J., Wu, G.: Residual feature aggregation network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  33. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.-T.: Bi-real net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 747–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_44

    Chapter  Google Scholar 

  34. Lugmayr, A., Danelljan, M., Van Gool, L., Timofte, R.: SRFlow: learning the super-resolution space with normalizing flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 715–732. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_42

    Chapter  Google Scholar 

  35. Lugmayr, A., Danelljan, M., Timofte, R.: Unsupervised learning for real-world super-resolution. In: IEEE International Conference on Computer Vision Workshop, pp. 3408–3416 (2019)

    Google Scholar 

  36. Lugmayr, A., Danelljan, M., Timofte, R.: Ntire 2020 challenge on real-world image super-resolution: methods and results. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 494–495 (2020)

    Google Scholar 

  37. Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: Pulse: self-supervised photo upsampling via latent space exploration of generative models. In: CVPR (2020)

    Google Scholar 

  38. Muqeet, A., Hwang, J., Yang, S., Kang, J.H., Kim, Y., Bae, S.H.: Ultra lightweight image super-resolution with multi-attention. In: European Conference on Computer Vision Workshops (2020)

    Google Scholar 

  39. Muqeet, A., Iqbal, M.T.B., Bae, S.H.: Hybrid residual attention network for single image super resolution. arXiv preprint arXiv:1907.05514 (2019)

  40. Ntavelis, E., et al.: AIM 2020 challenge on image extreme inpainting. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 716–741. Springer, Cham (2020)

    Google Scholar 

  41. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10428–10436 (2020)

    Google Scholar 

  42. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘Squeeze & Excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

    Chapter  Google Scholar 

  43. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  44. Son, S., et al.: AIM 2020 challenge on video temporal super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 1253, pp. xx–yy. Springer, Cham (2020)

    Google Scholar 

  45. Sreter, H., Giryes, R.: Learned convolutional sparse coding. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2191–2195 (2018)

    Google Scholar 

  46. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L., et al.: Ntire 2017 challenge on single image super-resolution: methods and results. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017

    Google Scholar 

  47. Timofte, R., De Smet, V., Van Gool, L.: A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.H. (eds.) 12th Asian Conference on Computer Vision (2014)

    Google Scholar 

  48. Wang, H., Bhaskara, V., Levinshtein, A., Tsogkas, S., Jepson, A.: Efficient super-resolution using mobilenetv3. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 87–102. Springer, Cham (2020)

    Google Scholar 

  49. Wang, X., Yu, K., Dong, C., Change Loy, C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 606–615 (2018)

    Google Scholar 

  50. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  51. Wei, P., et al.: AIM 2020 challenge on real image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 1253, pp. xx–yy. Springer, Cham (2020)

    Google Scholar 

  52. Xiong, D., Huang, K., Chen, S., Li, B., Jiang, H., Xu, W.: NoUCSR: efficient super-resolution network without upsampling convolution. In: ICCV Workshop (2019)

    Google Scholar 

  53. Xiong, D., Huang, K., Jiang, H., Li, B., Chen, S., Jiang, X.: IdleSR: efficient super-resolution network with multi-scale IdleBlocks. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 136–151. Springer, Cham (2020)

    Google Scholar 

  54. Xu, B., Tulloch, A., Chen, Y., Yang, X., Qiao, L.: Hybrid composition with idleblock: More efficient networks for image recognition. CoRR abs/1911.080609 (2019)

    Google Scholar 

  55. Yin, H., et al.: Dreaming to distill: data-free knowledge transfer via deepinversion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8715–8724 (2020)

    Google Scholar 

  56. You, Z., Yan, K., Ye, J., Ma, M., Wang, P.: Gate decorator: global filter pruning method for accelerating deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 2133–2144 (2019)

    Google Scholar 

  57. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 472–480 (2017)

    Google Scholar 

  58. Zhang, K., et al.: AIM 2020 challenge on efficient super-resolution: Methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 5–40. Springer, Cham (2020)

    Google Scholar 

  59. Zhang, K., Gu, S., Timofte, R.: Ntire 2020 challenge on perceptual extreme super-resolution: Methods and results. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 492–493 (2020)

    Google Scholar 

  60. Zhang, K., Gu, S., Timofte, R., et al.: Aim 2019 challenge on constrained super-resolution: methods and results. In: International Conference on Computer Vision Workshop, pp. 3565–3574 (2019)

    Google Scholar 

  61. Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., Timofte, R.: Plug-and-play image restoration with deep denoiser prior. arXiv preprint (2020)

    Google Scholar 

  62. Zhang, K., Van Gool, L., Timofte, R.: Deep unfolding network for image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3217–3226 (2020)

    Google Scholar 

  63. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: IEEE conference on Computer Vision and Pattern Recognition, pp. 3929–3938 (2017)

    Google Scholar 

  64. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3271 (2018)

    Google Scholar 

  65. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  66. Zhao, H., Kong, X., He, J., Qiao, Y., Dong, C.: Efficient image super-resolution using pixel attention. In: In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 56–72. Springer, Cham (2020)

    Google Scholar 

Download references

Acknowledgements

We thank the AIM 2020 sponsors: HUAWEI, MediaTek, Google, NVIDIA, Qualcomm, and Computer Vision Lab (CVL) ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang .

Editor information

Editors and Affiliations

A Teams and Affiliations

A Teams and Affiliations

AIM2020 Team

Title: AIM 2020 Efficient Super-Resolution Challenge

Members:

Kai Zhang (mailto:kai.zhang@vision.ee.ethz.ch),

Martin Danelljan (martin.danelljan@vision.ee.ethz.ch),

Yawei Li (yawei.li@vision.ee.ethz.ch),

Radu Timofte (radu.timofte@vision.ee.ethz.ch)

Affiliations:

Computer Vision Lab, ETH Zurich, Switzerland

NJU_MCG

Title: Residual Feature Distillation Network (RFDN)

Members: Jie Liu

(jieliu@smail.nju.edu.cn), Jie Tang, Gangshan Wu

Affiliation:

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

AiRiA_CG

Title: Faster Information Multi-distillation Network via Asymmetric Convolution

Members: Yu Zhu

(zhuyu.cv@gmail.com), Xiangyu He, Wenjie Xu, Chenghua Li, Cong Leng, Jian Cheng

Affiliation:

Nanjing Artificial Intelligence Chip Research, Institute of Automation, Chinese Academy of Sciences (AiRiA); MAICRO

UESTC-MediaLab

Title: Efficient Super-Resolution with Gradually Kernel Dilution

Members: Guangyang Wu\(^{1}\)

(mulns@outlook.com), Wenyi Wang\(^{1}\), Xiaohong Liu\(^{2}\)

Affiliation:

\(^{1}\) University of Electronic Science and Technology of China

\(^{2}\) McMaster University

XPixel

Title: Efficient Image Super-Resolution using Pixel Attention

Members: Hengyuan Zhao

(hy.zhao1@siat.ac.cn), Xiangtao Kong, Jingwen He,Yu Qiao, Chao Dong

Affiliation:

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

HaiYun

Title: Lightweight Image Super-resolution with Lattice Block

Members: Xiaotong Luo

(xiaotluo@qq.com), Liang Chen, Jiangtao Zhang

Affiliation:

Xiamen University, China

IPCV_IITM

Title: Lightweight Attentive Residual Network for Image Super-Resolution

Members: Maitreya Suin

(maitreyasuin21@gmail.com), Kuldeep Purohit, A. N. Rajagopalan

Affiliation:

Indian Institute of Technology Madras, India

404NotFound

Title: GCSR

Members: Xiaochuan Li

(1182784700@qq.com)

Affiliation:

Nanjing University of Aeronautics and Astronautics, Nanjing, China

MDISL-lab

Title: PFSNet: Partial Features Sharing for More Efficient Super-Resolution

Members: Zhiqiang Lang

(2015303107lang@mail.nwpu.edu.cn), Jiangtao Nie, Wei Wei, Lei Zhang

Affiliation:

School of Computer Science, Northwestern Polytechnical University, China

MLVC

Title: Multi Attention Feature Fusion Super-Resolution Network

Members: Abdul Muqeet\(^{1}\)

(amuqeet@khu.ac.kr), Jiwon Hwang\(^{1}\), Subin Yang\(^{1}\), JungHeum Kang\(^{1}\), Sungho Bae\(^{1}\), Yongwoo Kim\(^{2}\)

Affiliation:

\(^{1}\) Kyung Hee University, Republic of Korea

\(^{2}\) Sang Myung University, Republic of Korea

XMUlab

Title: Pixelshuffle Attention Network

Members: Liang Chen

(1806668306@qq.com), Jiangtao Zhang, Xiaotong Luo, Yanyun Qu

Affiliation:

Xianmen University

MCML-Yonsei

Title: LarvaNet: Hierarchical Super-Resolution via Internal Output and Loss

Members: Geun-Woo Jeon

(geun-woo.jeon@yonsei.ac.kr), Jun-Ho Choi, Jun-Hyuk Kim, Jong-Seok Lee

Affiliation:

Yonsei University, Republic of Korea

LMSR

Title: LMSR

Members: Steven Marty

(martyste@student.ethz.ch), Eric Marty

Affiliation:

ETH Zurich

ZJUESR2020

Title: IdleSR: Efficient Super-Resolution Network with Multi-Scale IdleBlocks

Members: Dongliang Xiong (xiongdl@zju.edu.cn)

Affiliation: Zhejiang University

SC-CVLAB

Title: Adaptive Hybrid Composition Based Super-Resolution Network via Fine-grained Channel Pruning

Members: Siang Chen

(11631032@zju.edu.cn)

Affiliation: Zhejiang University

HiImageTeam

Title: Efficient SR-Net

Members: Lin Zha\(^{1}\)

(zhalin@hisense.com), Jiande Jiang\(^{1}\), Xinbo Gao\(^{2}\), Wen Lu\(^{2}\)

Affiliation:

\(^{1}\) Qingdao Hi-image Technologies Co.,Ltd (Hisense Visual Technology Co.,Ltd.)

\(^{2}\) Xidian University

SAMSUNG_TOR_AIC

Title: Lightweight MobileNetV3 for Efficient Super-Resolution

Members: Haicheng Wang

(h.wang1@samsung.com), Vineeth Bhaskara, Alex Levinshtein, Stavros Tsogkas, Allan Jepson

Affiliation: Samsung AI Centre, Toronto

neptuneai

Title: Lightweight super resolution network with Neural Architecture Search

Members: Xiangzhen Kong

(neptune.team.ai@gmail.com)

lyl

Title: Coarse to Fine Pyramid Networks for Progressive Image Super-Resolution

Members: Tongtong Zhao\(^{1}\)

(yaopuss@126.com), Shanshan Zhao\(^{2}\)

Affiliation:

\(^{1}\) Dalian Maritime University

\(^{2}\) China Everbright Bank Co., Ltd

CET_CVLab

Title: Efficient Single Image Super-resolution using Progressive Wide Activation Net

Members: Hrishikesh P S

(hrishikeshps94@gmail.com), Densen Puthussery, Jiji C V

Affiliation:

College of Engineering, Trivandrum

wozhu

Title: FSSR

Members: Nan Nan

(2829272117@qq.com), Shuai Liu

InnoPeak_SR

Title: Shuffled Recursive Residual Network for Efficient Image Super-Resolution

Members: Jie Cai

(caijie0620@mail.com), Zibo Meng, Jiaming Ding, Chiu Man Ho

Affiliation:

InnoPeak Technology, Inc.

Summer

Title: Adaptively Multi-gradients Auxiliary Feature Learning for Efficient Super-resolution

Members: Xuehui Wang\(^{1,2}\)

(wangxh228@mail2.sysu.edu.cn), Qiong Yan\(^{1}\), Yuzhi Zhao\(^{3}\), Long Chen\(^{2}\)

Affiliation:

\(^{1}\) SenseTime Research

\(^{2}\) Sun Yat-sen University

\(^{3}\) City University of Hong Kong

Zhang9678

Title: Lightweight super-resolution network using convLSTM fusion features

Members: Jiangtao Zhang

(1328937778@qq.com),

Xiaotong Luo, Liang Chen, Yanyun Qu

Affiliation:

Xianmen University

H-ZnCa

Title: Sparse Prior-based Network for Efficient Image Super-Resolution

Members: Long Sun

(lungsuen@163.com), Wenhao Wang, Zhenbing Liu, Rushi Lan

Affiliation:

Guilin University of Electronic Technology, Guilin 541004, China.

MLP_SR

Title: A Light-weight Deep Iterative Residual Convolutional Network for Super-Resolution

Members: Rao Muhammad Umer

(engr.raoumer943@gmail.com), Christian Micheloni

Affiliation:

University of Udine, Italy

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K. et al. (2020). AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12537. Springer, Cham. https://doi.org/10.1007/978-3-030-67070-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67070-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67069-6

  • Online ISBN: 978-3-030-67070-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics