Abstract
This paper reviews the AIM 2020 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor \(\times \)4 based on a set of prior examples of low and corresponding high resolution images. The goal is to devise a network that reduces one or several aspects such as runtime, parameter count, FLOPs, activations, and memory consumption while at least maintaining PSNR of MSRResNet. The track had 150 registered participants, and 25 teams submitted the final results. They gauge the state-of-the-art in efficient single image super-resolution.
K. Zhang, M. Danelljan, Y. Li and R. Timofte were the challenge organizers, while the other authors participated in the challenge.
Appendix A contains the authors’ teams and affiliations. AIM webpage: https://data.vision.ee.ethz.ch/cvl/aim20/
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017
Bahat, Y., Michaeli, T.: Explorable super resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)
Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. In: Advances in Neural Information Processing Systems, pp. 284–293 (2019)
Cai, H., Gan, C., Han, S.: Once for all: Train one network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791 (2019)
Cai, Y., et al.: Learning delicate local representations for multi-person pose estimation. arXiv preprint arXiv:2003.04030 (2020)
Chen, S., Huang, K., Claesen, L., Li, B., Xiong, D., Jiang, H.: Adaptive hybrid composition based super-resolution network via fine-grained channel pruning. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 119–135. Springer, Cham (2020)
Ding, X., Ding, G., Guo, Y., Han, J.: Centripetal SGD for pruning very deep convolutional networks with complicated structure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4943–4953 (2019)
Ding, X., Guo, Y., Ding, G., Han, J.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Efrat, N., Glasner, D., Apartsin, A., Nadler, B., Levin, A.: Accurate blur models vs. image priors in single image super-resolution. In: IEEE International Conference on Computer Vision, pp. 2832–2839 (2013)
El Helou, M., et al.: AIM 2020: scene relighting and illumination estimation challenge. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 499–518. Springer, Cham (2020)
Fuoli, D., et al.: AIM 2020 challenge on video extreme super-resolution: methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 1253, pp. xx–yy. Springer, Cham (2020)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)
Gu, S., Timofte, R., Van Gool, L.: Multi-bin trainable linear unit for fast image restoration networks. arXiv preprint arXiv:1807.11389 (2018)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Howard, A., et al.: Searching for mobilenetv3. arXiv preprint arXiv:1905.02244 (2019)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: ACM Multimedia (ACM MM) (2019)
Ignatov, A., Timofte, R., et al.: AIM 2020 challenge on learned image signal processing pipeline. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 152–170. Springer, Cham (2020)
Ignatov, A., Timofte, R., et al.: AIM 2020 challenge on rendering realistic bokeh. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 213–228. Springer, Cham (2020)
Jeon, G.W., Choi, J.H., Kim, J.H., Lee, J.S.: LarvaNet: Hierarchical super-resolution via multi-exit architecture. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 73–86. Springer, Cham (2020)
Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition, June 2016
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Lefkimmiatis, S.: Universal denoising networks: a novel CNN architecture for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3204–3213 (2018)
Li, Y., Gu, S., Gool, L.V., Timofte, R.: Learning filter basis for convolutional neural network compression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5623–5632 (2019)
Li, Y., Gu, S., Mayer, C., Gool, L.V., Timofte, R.: Group sparsity: the hinge between filter pruning and decomposition for network compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8018–8027 (2020)
Li, Y., Gu, S., Zhang, K., Van Gool, L., Timofte, R.: DHP: differentiable meta pruning via hypernetworks. arXiv preprint arXiv:2003.13683 (2020)
Li, Y., Dong, X., Wang, W.: Additive powers-of-two quantization: an efficient non-uniform discretization for neural networks. In: International Conference on Learning Representations (2019)
Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., Huang, T.S.: Robust single image super-resolution via deep networks with sparse prior. IEEE Trans. Image Process. 25(7), 3194–3207 (2016)
Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)
Liu, J., Tang, J., Wu, G.: Residual feature distillation network for lightweight image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 41–55. Springer, Cham (2020)
Liu, J., Zhang, W., Tang, Y., Tang, J., Wu, G.: Residual feature aggregation network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.-T.: Bi-real net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 747–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_44
Lugmayr, A., Danelljan, M., Van Gool, L., Timofte, R.: SRFlow: learning the super-resolution space with normalizing flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 715–732. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_42
Lugmayr, A., Danelljan, M., Timofte, R.: Unsupervised learning for real-world super-resolution. In: IEEE International Conference on Computer Vision Workshop, pp. 3408–3416 (2019)
Lugmayr, A., Danelljan, M., Timofte, R.: Ntire 2020 challenge on real-world image super-resolution: methods and results. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 494–495 (2020)
Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: Pulse: self-supervised photo upsampling via latent space exploration of generative models. In: CVPR (2020)
Muqeet, A., Hwang, J., Yang, S., Kang, J.H., Kim, Y., Bae, S.H.: Ultra lightweight image super-resolution with multi-attention. In: European Conference on Computer Vision Workshops (2020)
Muqeet, A., Iqbal, M.T.B., Bae, S.H.: Hybrid residual attention network for single image super resolution. arXiv preprint arXiv:1907.05514 (2019)
Ntavelis, E., et al.: AIM 2020 challenge on image extreme inpainting. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 716–741. Springer, Cham (2020)
Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10428–10436 (2020)
Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘Squeeze & Excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Son, S., et al.: AIM 2020 challenge on video temporal super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 1253, pp. xx–yy. Springer, Cham (2020)
Sreter, H., Giryes, R.: Learned convolutional sparse coding. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2191–2195 (2018)
Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L., et al.: Ntire 2017 challenge on single image super-resolution: methods and results. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017
Timofte, R., De Smet, V., Van Gool, L.: A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.H. (eds.) 12th Asian Conference on Computer Vision (2014)
Wang, H., Bhaskara, V., Levinshtein, A., Tsogkas, S., Jepson, A.: Efficient super-resolution using mobilenetv3. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 87–102. Springer, Cham (2020)
Wang, X., Yu, K., Dong, C., Change Loy, C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 606–615 (2018)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5
Wei, P., et al.: AIM 2020 challenge on real image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 1253, pp. xx–yy. Springer, Cham (2020)
Xiong, D., Huang, K., Chen, S., Li, B., Jiang, H., Xu, W.: NoUCSR: efficient super-resolution network without upsampling convolution. In: ICCV Workshop (2019)
Xiong, D., Huang, K., Jiang, H., Li, B., Chen, S., Jiang, X.: IdleSR: efficient super-resolution network with multi-scale IdleBlocks. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 136–151. Springer, Cham (2020)
Xu, B., Tulloch, A., Chen, Y., Yang, X., Qiao, L.: Hybrid composition with idleblock: More efficient networks for image recognition. CoRR abs/1911.080609 (2019)
Yin, H., et al.: Dreaming to distill: data-free knowledge transfer via deepinversion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8715–8724 (2020)
You, Z., Yan, K., Ye, J., Ma, M., Wang, P.: Gate decorator: global filter pruning method for accelerating deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 2133–2144 (2019)
Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 472–480 (2017)
Zhang, K., et al.: AIM 2020 challenge on efficient super-resolution: Methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 5–40. Springer, Cham (2020)
Zhang, K., Gu, S., Timofte, R.: Ntire 2020 challenge on perceptual extreme super-resolution: Methods and results. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 492–493 (2020)
Zhang, K., Gu, S., Timofte, R., et al.: Aim 2019 challenge on constrained super-resolution: methods and results. In: International Conference on Computer Vision Workshop, pp. 3565–3574 (2019)
Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., Timofte, R.: Plug-and-play image restoration with deep denoiser prior. arXiv preprint (2020)
Zhang, K., Van Gool, L., Timofte, R.: Deep unfolding network for image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3217–3226 (2020)
Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: IEEE conference on Computer Vision and Pattern Recognition, pp. 3929–3938 (2017)
Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3271 (2018)
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)
Zhao, H., Kong, X., He, J., Qiao, Y., Dong, C.: Efficient image super-resolution using pixel attention. In: In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, LNCS 12537, pp. 56–72. Springer, Cham (2020)
Acknowledgements
We thank the AIM 2020 sponsors: HUAWEI, MediaTek, Google, NVIDIA, Qualcomm, and Computer Vision Lab (CVL) ETH Zurich.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Teams and Affiliations
A Teams and Affiliations
AIM2020 Team
Title: AIM 2020 Efficient Super-Resolution Challenge
Members:
Kai Zhang (mailto:kai.zhang@vision.ee.ethz.ch),
Martin Danelljan (martin.danelljan@vision.ee.ethz.ch),
Yawei Li (yawei.li@vision.ee.ethz.ch),
Radu Timofte (radu.timofte@vision.ee.ethz.ch)
Affiliations:
Computer Vision Lab, ETH Zurich, Switzerland
NJU_MCG
Title: Residual Feature Distillation Network (RFDN)
Members: Jie Liu
(jieliu@smail.nju.edu.cn), Jie Tang, Gangshan Wu
Affiliation:
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
AiRiA_CG
Title: Faster Information Multi-distillation Network via Asymmetric Convolution
Members: Yu Zhu
(zhuyu.cv@gmail.com), Xiangyu He, Wenjie Xu, Chenghua Li, Cong Leng, Jian Cheng
Affiliation:
Nanjing Artificial Intelligence Chip Research, Institute of Automation, Chinese Academy of Sciences (AiRiA); MAICRO
UESTC-MediaLab
Title: Efficient Super-Resolution with Gradually Kernel Dilution
Members: Guangyang Wu\(^{1}\)
(mulns@outlook.com), Wenyi Wang\(^{1}\), Xiaohong Liu\(^{2}\)
Affiliation:
\(^{1}\) University of Electronic Science and Technology of China
\(^{2}\) McMaster University
XPixel
Title: Efficient Image Super-Resolution using Pixel Attention
Members: Hengyuan Zhao
(hy.zhao1@siat.ac.cn), Xiangtao Kong, Jingwen He,Yu Qiao, Chao Dong
Affiliation:
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
HaiYun
Title: Lightweight Image Super-resolution with Lattice Block
Members: Xiaotong Luo
(xiaotluo@qq.com), Liang Chen, Jiangtao Zhang
Affiliation:
Xiamen University, China
IPCV_IITM
Title: Lightweight Attentive Residual Network for Image Super-Resolution
Members: Maitreya Suin
(maitreyasuin21@gmail.com), Kuldeep Purohit, A. N. Rajagopalan
Affiliation:
Indian Institute of Technology Madras, India
404NotFound
Title: GCSR
Members: Xiaochuan Li
(1182784700@qq.com)
Affiliation:
Nanjing University of Aeronautics and Astronautics, Nanjing, China
MDISL-lab
Title: PFSNet: Partial Features Sharing for More Efficient Super-Resolution
Members: Zhiqiang Lang
(2015303107lang@mail.nwpu.edu.cn), Jiangtao Nie, Wei Wei, Lei Zhang
Affiliation:
School of Computer Science, Northwestern Polytechnical University, China
MLVC
Title: Multi Attention Feature Fusion Super-Resolution Network
Members: Abdul Muqeet\(^{1}\)
(amuqeet@khu.ac.kr), Jiwon Hwang\(^{1}\), Subin Yang\(^{1}\), JungHeum Kang\(^{1}\), Sungho Bae\(^{1}\), Yongwoo Kim\(^{2}\)
Affiliation:
\(^{1}\) Kyung Hee University, Republic of Korea
\(^{2}\) Sang Myung University, Republic of Korea
XMUlab
Title: Pixelshuffle Attention Network
Members: Liang Chen
(1806668306@qq.com), Jiangtao Zhang, Xiaotong Luo, Yanyun Qu
Affiliation:
Xianmen University
MCML-Yonsei
Title: LarvaNet: Hierarchical Super-Resolution via Internal Output and Loss
Members: Geun-Woo Jeon
(geun-woo.jeon@yonsei.ac.kr), Jun-Ho Choi, Jun-Hyuk Kim, Jong-Seok Lee
Affiliation:
Yonsei University, Republic of Korea
LMSR
Title: LMSR
Members: Steven Marty
(martyste@student.ethz.ch), Eric Marty
Affiliation:
ETH Zurich
ZJUESR2020
Title: IdleSR: Efficient Super-Resolution Network with Multi-Scale IdleBlocks
Members: Dongliang Xiong (xiongdl@zju.edu.cn)
Affiliation: Zhejiang University
SC-CVLAB
Title: Adaptive Hybrid Composition Based Super-Resolution Network via Fine-grained Channel Pruning
Members: Siang Chen
(11631032@zju.edu.cn)
Affiliation: Zhejiang University
HiImageTeam
Title: Efficient SR-Net
Members: Lin Zha\(^{1}\)
(zhalin@hisense.com), Jiande Jiang\(^{1}\), Xinbo Gao\(^{2}\), Wen Lu\(^{2}\)
Affiliation:
\(^{1}\) Qingdao Hi-image Technologies Co.,Ltd (Hisense Visual Technology Co.,Ltd.)
\(^{2}\) Xidian University
SAMSUNG_TOR_AIC
Title: Lightweight MobileNetV3 for Efficient Super-Resolution
Members: Haicheng Wang
(h.wang1@samsung.com), Vineeth Bhaskara, Alex Levinshtein, Stavros Tsogkas, Allan Jepson
Affiliation: Samsung AI Centre, Toronto
neptuneai
Title: Lightweight super resolution network with Neural Architecture Search
Members: Xiangzhen Kong
(neptune.team.ai@gmail.com)
lyl
Title: Coarse to Fine Pyramid Networks for Progressive Image Super-Resolution
Members: Tongtong Zhao\(^{1}\)
(yaopuss@126.com), Shanshan Zhao\(^{2}\)
Affiliation:
\(^{1}\) Dalian Maritime University
\(^{2}\) China Everbright Bank Co., Ltd
CET_CVLab
Title: Efficient Single Image Super-resolution using Progressive Wide Activation Net
Members: Hrishikesh P S
(hrishikeshps94@gmail.com), Densen Puthussery, Jiji C V
Affiliation:
College of Engineering, Trivandrum
wozhu
Title: FSSR
Members: Nan Nan
(2829272117@qq.com), Shuai Liu
InnoPeak_SR
Title: Shuffled Recursive Residual Network for Efficient Image Super-Resolution
Members: Jie Cai
(caijie0620@mail.com), Zibo Meng, Jiaming Ding, Chiu Man Ho
Affiliation:
InnoPeak Technology, Inc.
Summer
Title: Adaptively Multi-gradients Auxiliary Feature Learning for Efficient Super-resolution
Members: Xuehui Wang\(^{1,2}\)
(wangxh228@mail2.sysu.edu.cn), Qiong Yan\(^{1}\), Yuzhi Zhao\(^{3}\), Long Chen\(^{2}\)
Affiliation:
\(^{1}\) SenseTime Research
\(^{2}\) Sun Yat-sen University
\(^{3}\) City University of Hong Kong
Zhang9678
Title: Lightweight super-resolution network using convLSTM fusion features
Members: Jiangtao Zhang
(1328937778@qq.com),
Xiaotong Luo, Liang Chen, Yanyun Qu
Affiliation:
Xianmen University
H-ZnCa
Title: Sparse Prior-based Network for Efficient Image Super-Resolution
Members: Long Sun
(lungsuen@163.com), Wenhao Wang, Zhenbing Liu, Rushi Lan
Affiliation:
Guilin University of Electronic Technology, Guilin 541004, China.
MLP_SR
Title: A Light-weight Deep Iterative Residual Convolutional Network for Super-Resolution
Members: Rao Muhammad Umer
(engr.raoumer943@gmail.com), Christian Micheloni
Affiliation:
University of Udine, Italy
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, K. et al. (2020). AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12537. Springer, Cham. https://doi.org/10.1007/978-3-030-67070-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-67070-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67069-6
Online ISBN: 978-3-030-67070-2
eBook Packages: Computer ScienceComputer Science (R0)