Skip to main content

FamilyGAN: Generating Kin Face Images Using Generative Adversarial Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12537))

Included in the following conference series:

Abstract

Automatic kinship verification using face images involves analyzing features and computing similarities between two input images to establish kin-relationship. It has gained significant interest from the research community and several approaches including deep learning architectures are proposed. One of the law enforcement applications of kinship analysis involves predicting the kin image given an input image. In other words, the question posed here is: “given an input image, can we generate a kin-image?” This paper attempts to generate kin-images using Generative Adversarial Learning for multiple kin-relations. The proposed FamilyGAN model incorporates three information, kin-gender, kinship loss, and reconstruction loss, in a GAN model to generate kin images. FamilyGAN is the first model capable of generating kin-images for multiple relations such as parent-child and siblings from a single model. On the WVU Kinship Video database, the proposed model shows very promising results for generating kin images. Experimental results show 71.34% kinship verification accuracy using the images generated via FamilyGAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://abcnews.go.com/Lifestyle/long-lost-brothers-discover-college-disbelief/story?id=51918769.

  2. 2.

    https://www.mirror.co.uk/3am/celebrity-news/rochelle-humes-reunites-long-lost-14977068.

  3. 3.

    https://abcnews.go.com/GMA/Family/adopted-woman-searches-long-lost-sister-learn-shes/story?id=56230030.

  4. 4.

    https://en.wikipedia.org/wiki/Boston_Marathon_bombing.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  2. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. arXiv preprint arXiv:1711.09020 (2017)

  3. Chopra, S., Hadsell, R., LeCun, Y., et al.: Learning a similarity metric discriminatively, with application to face verification. CVPR 1, 539–546 (2005)

    Google Scholar 

  4. Cole, J.B., et al.: Human facial shape and size heritability and genetic correlations. Genetics 205(2), 967–978 (2017)

    Article  Google Scholar 

  5. Crouch, D.J., et al.: Genetics of the human face: identification of large-effect single gene variants. Proc. Nat. Acad. Sci. 115(4), E676–E685 (2018)

    Article  Google Scholar 

  6. Dahan, E., Keller, Y.: Selfkin: self adjusted deep model for kinship verification. arXiv preprint arXiv:1809.08493 (2018)

  7. Fang, R., Tang, K.D., Snavely, N., Chen, T.: Towards computational models of kinship verification. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 1577–1580. IEEE (2010)

    Google Scholar 

  8. Ghatas, F.S., Hemayed, E.E.: GANKIN: generating kin faces using disentangled GAN. SN Appl. Sci. 2(2), 1–10 (2020)

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  11. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  12. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  13. Kohli, N., Vatsa, M., Singh, R., Noore, A., Majumdar, A.: Hierarchical representation learning for kinship verification. IEEE Trans. Image Process. 26(1), 289–302 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kohli, N., Yadav, D., Vatsa, M., Singh, R., Noore, A.: Supervised mixed norm autoencoder for kinship verification in unconstrained videos. IEEE Trans. Image Process. 28(3), 1329–1341 (2018)

    Article  MathSciNet  Google Scholar 

  15. Lu, J., et al.: Kinship verification in the wild: The first kinship verification competition. In: 2014 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–6. IEEE (2014)

    Google Scholar 

  16. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  17. Ozkan, S., Ozkan, A.: Kinshipgan: synthesizing of kinship faces from family photos by regularizing a deep face network. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2142–2146. IEEE (2018)

    Google Scholar 

  18. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  19. Wang, W., You, S., Karaoglu, S., Gevers, T.: Kinship identification through joint learning using kinship verification ensemble. arXiv preprint arXiv:2004.06382 (2020)

  20. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  21. Xia, S., Shao, M., Luo, J., Fu, Y.: Understanding kin relationships in a photo. IEEE Trans. Multimedia 14(4), 1046–1056 (2012)

    Article  Google Scholar 

  22. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sinha, R., Vatsa, M., Singh, R. (2020). FamilyGAN: Generating Kin Face Images Using Generative Adversarial Networks. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12537. Springer, Cham. https://doi.org/10.1007/978-3-030-67070-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67070-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67069-6

  • Online ISBN: 978-3-030-67070-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics