Skip to main content

FAN: Frequency Aggregation Network for Real Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12537))

Included in the following conference series:

Abstract

Single image super-resolution (SISR) aims to recover the high-resolution (HR) image from its low-resolution (LR) input image. With the development of deep learning, SISR has achieved great progress. However, It is still a challenge to restore the real-world LR image with complicated authentic degradations. Therefore, we propose FAN, a frequency aggregation network, to address the real-world image super-resolu-tion problem. Specifically, we extract different frequencies of the LR image and pass them to a channel attention-grouped residual dense network (CA-GRDB) individually to output corresponding feature maps. And then aggregating these residual dense feature maps adaptively to recover the HR image with enhanced details and textures. We conduct extensive experiments quantitatively and qualitatively to verify that our FAN performs well on the real image super-resolution task of AIM 2020 challenge. According to the released final results, our team SR-IM achieves the fourth place on the X4 track with PSNR of 31.1735 and SSIM of 0.8728.

Y. Pang, X. Li—The first two authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3086–3095 (2019)

    Google Scholar 

  2. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, pp. I, IEEE (2004)

    Google Scholar 

  3. Chen, Y., et al.: Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3435–3444 (2019)

    Google Scholar 

  4. Dahl, R., Norouzi, M., Shlens, J.: Pixel recursive super resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5439–5448 (2017)

    Google Scholar 

  5. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  6. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  7. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  8. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Soc. Press 22(2), 56–65 (2002)

    Google Scholar 

  9. Fritsche, M., Gu, S., Timofte, R.: Frequency separation for real-world super-resolution. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3599–3608. IEEE (2019)

    Google Scholar 

  10. Gohshi, S.: Real-time super resolution algorithm for security cameras. In: 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE), vol. 5, pp. 92–97. IEEE (2015)

    Google Scholar 

  11. Greenspan, H.: Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2009)

    Article  Google Scholar 

  12. Han, W., Chang, S., Liu, D., Yu, M., Witbrock, M., Huang, T.S.: Image super-resolution via dual-state recurrent networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1654–1663 (2018)

    Google Scholar 

  13. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1664–1673 (2018)

    Google Scholar 

  14. Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via kernel estimation and noise injection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 466–467 (2020)

    Google Scholar 

  15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  16. Kalarot, R., Li, T., Porikli, F.: Component attention guided face super-resolution network: Cagface. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 370–380 (2020)

    Google Scholar 

  17. Kim, D.W., Ryun Chung, J., Jung, S.W.: GRDN: grouped residual dense network for real image denoising and GAN-based real-world noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  18. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)

    Google Scholar 

  19. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (July 2017)

    Google Scholar 

  20. Lan, R., et al.: Cascading and enhanced residual networks for accurate single-image super-resolution. IEEE Trans. Cybern. 51(1), 115–125 (2020)

    Article  Google Scholar 

  21. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  22. Li, J., Fang, F., Mei, K., Zhang, G.: Multi-scale residual network for image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 517–532 (2018)

    Google Scholar 

  23. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution (2017)

    Google Scholar 

  24. Lu, L., Shin, Y., Su, Y., Karniadakis, G.E.: Dying relu and initialization: Theory and numerical examples (2019)

    Google Scholar 

  25. Lugmayr, A., Danelljan, M., Timofte, R.: Ntire 2020 challenge on real-world image super-resolution: Methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 494–495 (2020)

    Google Scholar 

  26. Lugmayr, A., et al.: Aim 2019 challenge on real-world image super-resolution: Methods and results. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3575–3583. IEEE (2019)

    Google Scholar 

  27. Maeda, S.: Unpaired image super-resolution using pseudo-supervision. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)

    Google Scholar 

  28. Ren, H., El-Khamy, M., Lee, J.: Image super resolution based on fusing multiple convolution neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 54–61 (2017)

    Google Scholar 

  29. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  30. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147–3155 (2017)

    Google Scholar 

  31. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

    Google Scholar 

  32. Wang, X., et al.: Esrgan: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  34. Wei, P., et al.: Aim 2020 challenge on real image super-resolution: methods and results (2020)

    Google Scholar 

  35. Wei, P., Lu, H., Timofte, R., Lin, L., Zuo, W., et al.: AIM 2020 challenge on real image super-resolution. In: European Conference on Computer Vision Workshops (2020)

    Google Scholar 

  36. Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm for surveillance images. Signal Process. 90(3), 848–859 (2010)

    Article  Google Scholar 

  37. Zhang, W., Liu, Y., Dong, C., Qiao, Y.: Ranksrgan: generative adversarial networks with ranker for image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3096–3105 (2019)

    Google Scholar 

  38. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  39. Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for image restoration. arXiv preprint arXiv:1903.10082 (2019)

  40. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSFC under Grant U1908209, 61632001 and the National Key Research and Development Program of China 2018AAA0101400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibo Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pang, Y. et al. (2020). FAN: Frequency Aggregation Network for Real Image Super-Resolution. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12537. Springer, Cham. https://doi.org/10.1007/978-3-030-67070-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67070-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67069-6

  • Online ISBN: 978-3-030-67070-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics