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Abstract. Single image super-resolution (SISR) aims to recover the
high-resolution (HR) image from its low-resolution (LR) input image.
With the development of deep learning, SISR has achieved great progress.
However, It is still a challenge to restore the real-world LR image with
complicated authentic degradations. Therefore, we propose FAN, a fre-
quency aggregation network, to address the real-world image super-resolu-
tion problem. Specifically, we extract different frequencies of the LR im-
age and pass them to a channel attention-grouped residual dense network
(CA-GRDB) individually to output corresponding feature maps. And
then aggregating these residual dense feature maps adaptively to recover
the HR image with enhanced details and textures. We conduct exten-
sive experiments quantitatively and qualitatively to verify that our FAN
performs well on the real image super-resolution task of AIM 2020 chal-
lenge. According to the released final results, our team SR-IM achieves
the fourth place on the X4 track with PSNR of 31.1735 and SSIM of
0.8728.

Keywords: Frequency aggregation network (FAN), Real image super-
resoltion (RealSR), AIM 2020 challenge.

1 Introduction

Single image super-resolution (SISR) task aims to recover the high-resolution
(HR) image from its low-resolution (LR) input image, where the LR image is
acquired by applying some downsamping settings to the HR image. Whether
the early traditional methods like [8,2] or recent methods [6,15,19,27], SISR has
drawn more and more attention because of its wide range of application, such as
medical image[11], surveillance [36] and security [10]. With the development of
convectional neural networks (CNN) and several high quality super-resolution
datasets, Recent models [6,15,19,27,20,16] have achieved remarkable success in
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SISR task. A well-designed CNN can effectively capture the non-linear mapping
and automatically learn the mapping function based on various high-quality
super-resolution dataset. However, these models can perform well on the “clean”
standard benchmarks, and they often fail to be applied in real-world scenarios.
They cannot handle the real-world image super-resolution problem with compli-
cated degradation processes, as shown in Fig. 1.

(a) LR (b) General SR (c) FAN(ours)

Fig. 1. Examples of SISR cannot be generalized to RealSR. (a) Real low-resolution
image, which is captured by low quality DSLR camera. (b) Processed by general SR
model EDSR. (c) Processed by our FAN.

Therefore, the real-world image super-resolution (RealSR) has attracted more
and more attention. Different from the general SISR, the purpose of RealSR is
to learn a general model to restore LR image captured under practical scenarios
to high-resolution. This model focuses on solving the degradation problem that
is more complex than bicubic downsampling. The paired LR and HR images are
captured by various DSLR cameras. The diverse degradation differences among
devices can be expressed as Eq.1

IHR = (I ∗ kHR) + nHR,

ILR = (I ∗ kLR)↓s + nLR,
(1)

where kLR and kHR represent degradation kernel of high quality and low qual-
ity DSLR cameras respectively. ↓s denotes the multiple of downsampling. nHR
and nLR are additive noise. I represents the real world image. IHR and ILR
are the image pairs collected with high-quality and low-quality DSLR cameras
respectively. RealSR recovers the IHR from ILR, which more satisfies the needs
of industrial applications. According to Eq. 1, we can get the ILR from IHR as
Eq.2.

ILR = (IHR ∗ k−1HR ∗ kLR)↓s + nLR − (nHR ∗ k−1HR ∗ kLR)↓s. (2)

From the above equation, we can find that the RealSR is more complicated than
general SISR. When the degradation of high-quality DSLR camera is small, the
Eq. 2 will be degraded to general SISR problem.
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In this paper, we propose a frequency aggregation network (FAN) for complex
real-world image super-resolution problem. Specifically, we extracted the low-
frequency, middle-frequency and high-frequency of LR image with multi-scale
representation. Then we utilize different branches to restore the corresponding
frequency components of LR and aggregate them adaptively with channel atten-
tion mechanism to generate the HR image. From different frequency components,
our framework can be more robust to solving different distortions. In order to
solve the complex degradation kernels, we take RDB [40] as our basic unit, and
redesign GRDB [17] into CA-GRDB by introducing a channel mechanism to
adaptively aggregate the representations of different receptive fields, which can
further improve the representation ability of the network. Extensive experiments
have validated the effectiveness of our FAN for real image super-resolution prob-
lem. According to the released final results, our team SR-IM achieves the fourth
place on the X4 track with PSNR of 31.1735 and SSIM of 0.8728 by applying
our FAN on the real image super-resolution task of AIM 2020 challenge [34,35].

Our contributions can be summarized as follows:

– We propose a frequency aggregation network (FAN) for real image-world
super-resolution problem.

– We redesign the novel CA-GRDB module by introducing a channel attention
mechanism to further improve the representation ability of network.

– According to the released final results, our team SR-IM achieves the forth
place on the X4 track with PSNR of 31.1735 and SSIM of 0.8728 on the
real-world image super-resolution task of AIM 2020 challenge [34].

2 Related Works

2.1 Single Image Super-Resolution

Dong et al. proposed the SRCNN [6,7] which can be roughly seen as the first
SISR work based on CNN. They adopted an end-to-end supervised learning
model to restore the HR images with its corresponding bicubic downsamping
LR images. Compared to traditional methods [8,2], they reconstructed high-
quality HR images with clearer details and higher metric scores. SRCNN proves
the effectiveness of CNN in solving SISR problem and inspires plenty of works
to be proposed to improve the qualitative and quantitative results. Kim et al.
[18] proposed DRCN in which they designed a deeper recursive layer with the
receptive field of 41 to demonstrate their performance in common benchmarks.
But methods extended by SRCNN [18,30] usually utilize the pre-defined un-
samping operator which increases unnecessary computational cost and lead to
reconstruction artifacts in some cases. To tackle this problem, LapSRN [19] con-
structed a set of cascaded sub-networks to progressively predicts the sub-band
high frequency residuals. It replaced the pre-defined upsampling with the learned
transposed convolutional layers to remove the undesired artifacts and reduce the
computational cost.
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Considered the methods mentioned above, we still have the difficulty to re-
cover the HR image with more high-frequency details when using larger unsam-
pling factors. Since those methods focus to optimize the pixel loss and ignore the
image quality, the results often lack high-frequency details or fail to maintain
the perceptual fidelity compared to its high-resolution “ground truth”. Ledig et
al. [21] proposed SRGAN, the first SISR work which utilized Generative Adver-
sarial Network(GAN), to solve the problem. They combine a perceptual loss, an
adversarial loss and a content loss to infer HR images for 4x upsampling factors
and show hugely signicant gains in perceptual quality. Wang et al. [32] proposed
ESRGAN which is an enhanced version by reconsidering the entire SRGAN and
modifing it in network architecture, adversarial loss and perceptual loss. And ES-
RGAN brings the subjective state-of-the-art algorithm to SR. Zhang et al. [37]
proposed RankSRGAN to introduce a ranker to learn the behavior of perceptual
metrics and address the indifferentiable perceptual metrics problem.

Unlike previous feed-forward approaches, Haris et al. [13] introduced the
back-projection into the reconstruction process of SISR. They showed that com-
bining the up and down sampling, along with error feedbacks, encourages to
get better results. Then, it seems to be a new trend to exploite the attention
mechanism which can adaptively process visual information and focus on salient
areas. RCAN [38] was proposed to apply the channel attention to capture the
dependencies among channels. RNAN [39] utilized the local and non-local at-
tention modules to get feature representation and dependencies. Similarly, SAN
[5] also incorporated the non-local attention mechanism to capture long-range
spatial contextual information. In addition, multi-pass methods also prove its
effectiveness in SISR in recent work [4,28,22,12]. Within it, different paths may
perform different operations to extract corresponding feature maps. By fusing
these feature maps coming from each path, the whole network provides better
modelling capabilities and generalization. We hence get inspired to construct
our three-path aggregation network to capture different frequency infromation
of LR images. And we demonstrate that our method performs well on the AIM
2020 challenge, came the fourth place on the X4 track with PSNR of 31.1735
and SSIM of 0.8728.

2.2 Real-World Image Super-Resolution

The SISR methods mentioned above usually utilize the clean and ideal datasets
which mostly adopt simple and uniform degradation (e.g. bicubic downsampling)
to construct LR images from HR images without any distracting artifacts (e.g.
sensor noise, image compression, non-ideal PSF, etc). However, since the degra-
dation in real world images is more complicated, SISR models inevitably fail in
real-world image super-resolution with limited application and generalization.

To overcome the problem, several real-world super-resolution challenges [26,25]
have been hold to attract more participants to come up their solutions. Cai et
al. [1] build a real-world single super-resolution dataset where paired LR-HR
images on the same scene are captured by adjusting the focal length of a digital
camera. Shocher et al. [29] proposed ZSSR , the first unsupervised CNN-based
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SR method, to train a small image-specific CNN at test time by expoliting the
internal recurrence information of the image. Fritsche et al. [9] proposed DS-
GAN to generate LR-HR pairs with similar natural image characteristics. Ji et
al. [14] proposed a new degradation framework with various blur kernels and
noise injections to solve the realistic image super-resolution problem. However,
in this work, we propose FAN to extract the different frequency components of
the LR image and then aggregate them to recover the HR image with more high
frequency details.

3 Method

In this section, we will illustrate the overall architecture of our FAN and explain
each component in detail, including hierarchical feature extractor (HFE), the
main body with three branches and fusion module.
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Fig. 2. The proposed network architecture: FAN

3.1 Overall Structure of FAN

Our end-to-end frequency aggregation network (FAN) is shown in Fig. 2. We
first extract different frequency components of the LR image through the hier-
archical feature extractor (HFE), and then pass them to each branch to obtain
corresponding feature map. FAN contains three branches with same structure
to process high-frequency component (HF), middle-frequency component (MF)
and low-frequency component (LF) respectively. Followed three branches, FAN
utilizes the fusion module to recover the HR image with enhanced details and
textures from three residual dense feature maps.

3.2 Hierarchical Feature Extractor

Method [3] has proved that features extracted by different scale factors can
capture different frequency information of the image. Inspired by it, we design the



6 Y. Pang et al.

Conv1
(k7n64s1p3)

Conv3
(k3n128s2p1)

Conv2
(k5n128s2p2)

HF MF

LF

LR

Fig. 3. Hierarchical feature extractor (HFE) with corresponding kernel size (k), number
of feature maps (n), stride (s) and padding size (p) for each convolutional layer.

hierarchical feature extractor (FHE), which is shown in Fig. 3, to progressively
extract different frequency components. Specifically, we gradually input the LR
image into three convolutional layers and output the hierarchical feature maps
in each layer. As [3] claimed, the larger feature map size is, the higher frequency
component it contains. Therefore, we design the first convolutional layer (Conv1)
with form of k7n64s1p3 to output the same size feature map (HF) as the LR
image. The remaining two (Conv2 and Conv3) with forms of k5n128s2p2 and
k3n128s2p1 produce the feature maps (MF and LF) which have half and quarter
size of the input LR image. We indicate the convolutional layer by corresponding
kernel size (k), number of feature maps (n), stride (s) and padding size (p).
Among three frequency components, LF contains the low-level frequency of LR
image with roughly structure and HF represents the high-level frequency with
fine-grained details such as edges and textures. MF indicates the intermediate
value between them. The entire frequency component extraction process can also
be defined as Eq. 3.

HF = Conv1(ILR),MF = Conv2(HF ), LF = Conv3(MF ) (3)

3.3 Main Body: Three Branches

Since the degradation of DSLR camera is complex and contains multiple dis-
tortions such as blur and noise, we need to improve the network representation
ability. After HFE, we hence propose the main body with three same branches
to handle each frequency feature map separately. Inspired by [38] and [17], we
introduce channel attention mechanism into the grouped residual dense block
(GRDB) termed as CA-GRDB to adaptively aggregate those residual dense
blocks (RDBs) [40] with different attention weights. We cascade four CA-GRDBs
in each branch where each CA-GRDB consists of three RDBs, resulting 12 RDBs
of each branch shown in Fig. 2.

Then the specific structure of CA-GRDB and RDB is shown in Fig. 4. In CA-
GRDB, we cascade three RDBs and apply channel attention after each RDB.
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Fig. 4. Components of CA-GRDB and RDB, where C denotes channel attention mod-
ule from [38] and the convolutional layers in RDB are from [17].

Then the feature maps from channel attention are concatenated together as
fusing operation. As for the RDB, we replace ReLU with LeakyReLU to avoid
dying ReLU problem [24]. And each RDB is constructed by 8 layers with the form
3x3 Conv-LeakyReLU-Concat via dense connection and residual connection.

3.4 Fusion Module

The fusion module is shown in Fig. 5. Like [31] claimed, Non-Local module
(NL) tends to capture the long-term dependencies of features to compensate the
lost information due to the local neighborhood filtering in convolutional layers.
To fuse the features of different branches, we utilize non-local attention and
convolution layer to further capture the correlation between different frequency
features. Then we exploit pixel-shuffle layer used in [23] and convolutional layer
twice to upsample the frequency feature to the original image size, which is
the generated HR image. Notice that we employ 2x upsampling operation using
pixel-shuffle layer and we detail each convlutional layer with corresponding kernel
size (k), number of feature maps (n), stride (s) and padding size (p) in Fig. 5.

3.5 Loss Functions

We first employ pixel-wise L1 loss to measure the reconstruction error and then
exploit MSE loss to fine tune our model. And the overall loss function can be
represented as follows,

LALL = LL1 + LMSE (4)
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Fig. 5. Fusion module, which integrate non-local attention [31], pixel-shuffle layer [23]
and convolution layer to capture the correlation between different frequency features.
Each convolutional layer is denoted with corresponding kernel size(k), number of fea-
ture maps(n), stride(s) and padding size (p). (2 ↑) means 2x upsampling operation
using pixel-shuffle layer.

4 Experiments

In this section, we will illustrate the RealSR dataset and evaluation metrics
used in our experiments. And we will describe the implementation details of our
training and testing. We compare our FAN with seven state-of-the-art methods
qualitatively and quantitatively. To further verify the effectiveness of our each
FAN module, We also conduct several ablation studies.

4.1 Dataset

We train our FAN model based on 19,000 LR-HR pairs of training images pro-
vided by AIM 2020 Real Image Super-Resolution Challenge-Track3, where the
paired LR-HR images are captured by various camera in practical scenarios. In
addition, the validation dataset contains 20 pairs of images. Although the test
dataset provides 60 pairs of LR-HR images, the HR images are not available in
the test stage. Therefore, we test our FAN model on validation dataset and com-
pare with other state-of-the-art methods in this work. According to the released
final results, we achieved the fourth place on the X4 track with PSNR of 31.1735
and SSIM of 0.8728 on test dataset.

4.2 Evaluation Metrics

(1) Peak Signal-to-Noise Ratio (PSNR): PSNR is one of the most widely
used full-reference quality metrics. It measures the ratio between the maximum
possible value (power) of a signal and the power of distorting noise that affects
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the quality of its representation. In other words, PSNR metric reflects the in-
tensity differences between the real HR image and the recovered HR image. A
higher PSNR score means that the intensity of two images is more close. Math-
ematically, it is high related to MSE loss mentioned above:

PSNR = 10log10(
R2

MSE
) (5)

where R2 denotes the maximum fluctuation in the input image data type.
(2) The Structural SIMilarity Index (SSIM) [33]: SSIM evaluate the image
quality based on luminance, contrast and structure from the perspective of image
formation. We apply it to compute the perceptual distance between the real HR
image and the recovered image. A higher SSIM score means that the luminance,
contrast and structure of two images are more similar. Mathematically,

LSSIM = [l(Î , I)α · [c(Î , I)]β · [s(Î , I)]γ

l(Î , I)α =
2µÎµI + C1

µ2
Î

+ µI2 + C1

c(Î , I)]β =
2σÎσI + C2

σ2
2 + σ2

I + C2

s(Î , I)]γ =
σÎI + C3

σÎσI + C3

(6)

where µÎ , µI ,σÎ ,σI denote mean and standard deviation of the image ÎHR, IHR
respectively. C1, C2, C3 are three constants to avoid instability. α, β, γ are
hyper-parameters to control the relative importance.

4.3 Implementation Details

Our FAN is implemented based on PyTorch framework with four NVIDIA 1080Ti
GPUs. To avoid undesirable over-fitting behaviors due to the limited data, we
use data augmentation in the process of training such as randomly cropping,
flipping and rotation. The number of mini-batches was set as 8. We use Adam
optimizer with a initial learning rate of 0.0001 which will decay by a factor 0.5
every 30 epochs. We spent almost 48 hours to train our FAN model.

For testing, we first crop the LR image into several 196× 196 small patches
and then fed them into our FAN model to obtain the HR patches. Finally we
convert those patches into a complete HR image. Our model requires 0.19s on
a single NVIDIA 1080-Ti GPU with an LR image of 196× 196 for testing. And
we all use the 130 epochs.

4.4 Comparison with the state-of-the-art methods

We compare our FAN model with seven state-of-the-art methods in same test
settings. The first one is a traditional method, i.e, bicubic upsampling. And the
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others are CNN-based methods which are retrained on the RealSR x4 dataset
for fairness. DBPN [13] exploits iterative up and downsampling layers to self-
correct features at each stage by error feedback mechanism. EDSR [23] modifies
the conventional residual networks by removing some unnecessary modules and
get significant performance improvement. RCAN [38] proposes the channel at-
tention to capture the dependencies among deep residual feature maps. RDN
[40] conducts a novel residual dense network to extract feature maps. SAN [5]
incorporates the non-local attention mechanism to capture long-range spatial
contextual information. VDSR [18] extends the depth of neural network which
highly improves the accuracy.

Table 1. Quantitative results on RealSR x4 dataset. We compare our FAN with the
state-of-the-art methods in terms of PSNR and SSIM.

Method VDSR EDSR RDN DBPN RCAN SAN FAN(ours) FAN+

PSNR 28.966 29.522 29.790 29.305 30.002 30.112 30.598 30.719

SSIM 0.8322 0.8444 0.8486 0.8388 0.8529 0.8557 0.8603 0.8621

Table 1 shows the comparisons of our FAN with the previous methods on
RealSR x4 dataset. Compared to other methods, our FAN with self-ensemble
(×8) termed as FAN+ containing flipping (×4) and rotation (×4). FAN+ both
performs the best scores in PSNR and SSIM, leading to a 0.607 dB and a 0.0064
dB increase respectively compared with SAN [5]. Even without self-ensemble,
termed as FAN(ours), can also achieve 0.486 dB and 0.0046 dB increase.

The qualitatively comparison is shown in Fig. 6. The traditional bicubic
upsamping produces the most blurry results. And compared with the other cnn-
based methods, our FAN model can generate sharper and clearer HR images
without obvious artifacts or distortions which are caused by the enlarged DSLR
camera lens in the RealSR dataset. For example, the building fences and leaf
veins are more clearer and not anamorphic. All in all, our FAN model can solve
the RealSR problem well while the previous SISR methods can not generalize to
this problem.

4.5 Ablation study

To further demonstrate the effectiveness of our each module, we conduct several
ablation studies to investigate the influence of the multi-frequency branches,
channel attention for CA-GRDB, non-local module, channel attention mecha-
nism and the number of RDBs in our FAN.The subjective performance compar-
isons in ablation study are shown in Fig. 7.

Dataset Since the ground truth HR images of validation dataset are not re-
leased, we randomly split the training dataset into two parts by the ratio 7:3
for training and testing respectively. Notice that this dataset setting is only for
ablation study.



FAN 11

Bicubic DBPN EDSR

FAN(ours)

RCAN

RDN SAN VDSRLR

Bicubic DBPN EDSR RCAN

FAN(ours)RDN SAN VDSRLR

Bicubic DBPN EDSR RCAN

FAN(ours)RDN SAN VDSRLR

Fig. 6. The performance comparison of our FAN with the state-of-the-art methods
performed on RealSR x4 dataset. The state-of-the-art methods are bicubic upsampling,
DBPN [13], EDSR [23], RCAN [38], RDN [40], SAN [5] and VDSR [18] respectively.
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Fig. 7. The subjective performance comparisons in ablation studies of FAN.
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Multi-frequency branches We set the number of branches from 1 to 4 to
figure out the effects of different branches, denoted as FAN-1, FAN-2, FAN-3,
FAN-4 shown in Table 2. with the number of branches increasing, we can observe
the improvement of performance in general. However, the gain gets smaller and
the number of parameters increase significantly when the number of branches is
more than 3. Therefore, we select 3 as a trade-off to balance the complexity of
network and performance.
Channel attention(CA) and Non-local module(NL) We exploit CA to
model the feature inter-dependencies, which enforces our model to concentrate
on more informative features. Like [31] claimed, NL tends to capture the long-
term dependencies of features to compensate the lost information due to the
local neighborhood filtering in convolutional layers. From Table 3, we can see
that whether removing CA (w/o CA) or removing NL (w/o NL) results in the
drop of performance. At the same time, adding CA and NL both would achieve
best performance while the number of parameters only has slightly increasing.

Table 2. Comparisons between different number of branches in FAN. Tested on par-
titioned dataset, which is different from validation dataset.

Branches FAN-1 FAN-2 FAN-3 FAN-4

Parameters (MB) 5.81 27.95 50.30 72.74

PSNR (dB) 28.5210 28.8029 28.9464 28.9598

SSIM 0.8153 0.8194 0.8231 0.8233

Table 3. Ablation study on different combinations of channel attention and non-local
attention. Tested on partitioned dataset.

CA. NL. Parameters(MB) PSNR(dB) SSIM

X X 50.30 28.9464 0.8231
× X 50.28 28.8073 0.8195
X × 50.12 28.7931 0.8194
× × 50.10 28.7571 0.8190

5 Conclusions

In this paper, we proposed FAN, a frequency aggregation network, to solve the
real-world image super-resolution problem which suffers from more complicated
degradation process rather than simple bicubic downsampling. Our model is
designed in an end-to-end manner, in which HFE extract three feature maps
contained different frequency information firstly. And then pass them into CA-
GRDB module independently to output corresponding residual dense feature
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map in each frequency. Finally, we apply fusion module to integrate them to re-
cover the HR image. We validate the effectiveness of our FAN in RealSR Dataset
with extensive experiments. In addition, our model performs well on the AIM
2020 challenge which came the fourth place on the X4 track with PSNR of
31.1735 and SSIM of 0.8728.
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