Abstract
This paper explores a yet another approach to Explainable Artificial Intelligence. The proposal consists in application of Constraint Programming to discovery of internal structure and parameters of a given black-box system. Apart from specification of a sample of the input and output values, some presupposed knowledge about the possible internal structure and functional components is required. This knowledge can be parameterized with respect to functional specification of internal components, connections among them, and internal parameters. Models of constraints are put forward and example case studies illustrate the proposed ideas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use the MiniZinc Constraint Programming language: https://www.minizinc.org/ run under Linux Mint.
- 2.
References
Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)
Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)
Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)
Ligęza, A.: Polskie Towarzystwo Informatyczne. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the Federated Conference on Computer Science and Information Systems 2012, pp. 101–107. IEEE Computer Society Press, Warsaw; Los Alamitos (2012)
Ligęza, A.: Polskie Towarzystwo Informatyczne. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybinski, H., Skowron, A., R.Z.W. (eds.) International Symposium on Methodologies for Intelligent Systems, pp. 261–268. Springer, Warsaw (2017)
Magnani, L., Bertolotti, T.: Springer Handbook of Model-Based Science. Springer, Heidelberg (2017)
Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., et al.: Information Fusion (2019)
Došilović, F.K., Brčić, M., Hlupić, N.: 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), pp. 0210–0215. IEEE (2018)
Pearl, J.: Causality. Models, Reasoning and Inference, 2nd edn. Cambridge University Press, New York (2009)
Li, J., Le, T.D., Liu, L., Liu, J.: ACM Trans. Intell. Syst. Technol. 7(2), 14:1 (2015)
Yu, K., Li, J., Liu, L.: A review on algorithms for constraint-based causal discovery. arxiv:1611.03977v1 [cs.ai], University of South Australia (2016)
Ligęza, A.: International Conference on Diagnostics of Processes and Systems, pp. 94–105. Springer (2017)
A. Ligęza, in Proceedings of the International joint Conference on Knowledge discovery, Knowledge engineering and Knowledge management, IC3K, vol. 2-KEOD (SCITEPRESS - Science and Technology Publications, Lisbon, Portugal, 2015), IC3K, vol. 2-KEOD, pp. 352–357
Wiśniewski, P., Kluza, K., Ligęza, A.: Applied Sciences 8(9), 1428 (2018)
Wiśniewski, P., Ligęza, A.: International Conference on Artificial Intelligence and Soft Computing, pp. 788–798. Springer (2018)
Wiśniewski, P., Kluza, K., Jobczyk, B, Stachura-Terlecka, K., Ligęza, A.: International Conference on Knowledge Science, Engineering and Management, pp. 55–60. Springer (2019)
Kluza, K., Wiśniewski, P., Adrian, W.T., Ligęza, A.: International Conference on Knowledge Science, Engineering and Management, pp. 615–627. Springer (2019)
Ligęza, A, Fuster-Parra, P., Aguilar-Martin, J.: LAAS Report No. 96316 (1996)
Ligęza, A., Górny, B.: Springer Handbook of Model-Based Science, pp. 435–461. Springer, Cham (2017)
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: ACM Comput. Surv. 51(5), 1–42 (2019). https://doi.org/10.1145/3236009
Ribeiro, M.T., Singh, S., Guestrin, C.: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)
Chen, H., Lundberg, S., Lee, S.I.: arXiv preprint arXiv:1911.11888 (2019)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.:Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Zhang, Y., Sreedharan, S., Kulkarni, A., Chakraborti, T., Zhuo, H.H., Kambhampati, S.: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1313–1320. IEEE (2017)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice-Hall, New York (2010)
Reiter, R.: Artif. Intell. 32, 57 (1987)
Hamscher, W., Console, L., de Kleer, J. (eds.): Readings in Model-Based Diagnosis. Morgan Kaufmann, San Mateo (1992)
Poole, D.: Proceedings of IJCAI-89, Sridharan, N.S. (ed.), pp. 1304–1310. Morgan Kaufmann (1989)
Bessiere, C., Raedt, L.D., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreshi, D. (eds.) Data Mining and Constraint Programming. Foundations of a Cross-Disciplinary Approach. Lecture Notes in Artificial Intelligence, vol. 10101. Springer International Publishing (2016)
Ligęza, A., Kościelny, J.M.: Int. J. Appl. Math. Comput. Sci. 18(4), 465 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ligęza, A. et al. (2021). Explainable Artificial Intelligence. Model Discovery with Constraint Programming. In: Stettinger, M., Leitner, G., Felfernig, A., Ras, Z.W. (eds) Intelligent Systems in Industrial Applications. ISMIS 2020. Studies in Computational Intelligence, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-030-67148-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-67148-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67147-1
Online ISBN: 978-3-030-67148-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)