Skip to main content

Explainable Artificial Intelligence. Model Discovery with Constraint Programming

  • Conference paper
  • First Online:
Intelligent Systems in Industrial Applications (ISMIS 2020)

Abstract

This paper explores a yet another approach to Explainable Artificial Intelligence. The proposal consists in application of Constraint Programming to discovery of internal structure and parameters of a given black-box system. Apart from specification of a sample of the input and output values, some presupposed knowledge about the possible internal structure and functional components is required. This knowledge can be parameterized with respect to functional specification of internal components, connections among them, and internal parameters. Models of constraints are put forward and example case studies illustrate the proposed ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the MiniZinc Constraint Programming language: https://www.minizinc.org/ run under Linux Mint.

  2. 2.

    See: https://en.wikipedia.org/wiki/Seven-segment_display.

References

  1. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)

    MATH  Google Scholar 

  2. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  3. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  4. Ligęza, A.: Polskie Towarzystwo Informatyczne. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the Federated Conference on Computer Science and Information Systems 2012, pp. 101–107. IEEE Computer Society Press, Warsaw; Los Alamitos (2012)

    Google Scholar 

  5. Ligęza, A.: Polskie Towarzystwo Informatyczne. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybinski, H., Skowron, A., R.Z.W. (eds.) International Symposium on Methodologies for Intelligent Systems, pp. 261–268. Springer, Warsaw (2017)

    Google Scholar 

  6. Magnani, L., Bertolotti, T.: Springer Handbook of Model-Based Science. Springer, Heidelberg (2017)

    Google Scholar 

  7. Arrieta, A.B., Díaz-Rodríguez, N.,  Del Ser, J.,  Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., et al.: Information Fusion (2019)

    Google Scholar 

  8. Došilović, F.K., Brčić, M., Hlupić, N.: 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), pp. 0210–0215. IEEE (2018)

    Google Scholar 

  9. Pearl, J.: Causality. Models, Reasoning and Inference, 2nd edn. Cambridge University Press, New York (2009)

    Google Scholar 

  10. Li, J., Le, T.D., Liu, L., Liu, J.: ACM Trans. Intell. Syst. Technol. 7(2), 14:1 (2015)

    Google Scholar 

  11. Yu, K., Li, J., Liu, L.: A review on algorithms for constraint-based causal discovery. arxiv:1611.03977v1 [cs.ai], University of South Australia (2016)

  12. Ligęza, A.: International Conference on Diagnostics of Processes and Systems, pp. 94–105. Springer (2017)

    Google Scholar 

  13. A. Ligęza, in Proceedings of the International joint Conference on Knowledge discovery, Knowledge engineering and Knowledge management, IC3K, vol. 2-KEOD (SCITEPRESS - Science and Technology Publications, Lisbon, Portugal, 2015), IC3K, vol. 2-KEOD, pp. 352–357

    Google Scholar 

  14. Wiśniewski, P., Kluza, K., Ligęza, A.: Applied Sciences 8(9), 1428 (2018)

    Article  Google Scholar 

  15. Wiśniewski, P.,  Ligęza, A.: International Conference on Artificial Intelligence and Soft Computing, pp. 788–798. Springer (2018)

    Google Scholar 

  16. Wiśniewski, P.,  Kluza, K., Jobczyk, B,  Stachura-Terlecka, K.,  Ligęza, A.: International Conference on Knowledge Science, Engineering and Management, pp. 55–60. Springer (2019)

    Google Scholar 

  17. Kluza, K., Wiśniewski, P., Adrian, W.T., Ligęza, A.: International Conference on Knowledge Science, Engineering and Management, pp. 615–627. Springer (2019)

    Google Scholar 

  18. Ligęza, A,  Fuster-Parra, P., Aguilar-Martin, J.: LAAS Report No. 96316 (1996)

    Google Scholar 

  19. Ligęza, A., Górny, B.: Springer Handbook of Model-Based Science, pp. 435–461. Springer, Cham (2017)

    Book  Google Scholar 

  20. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: ACM Comput. Surv. 51(5), 1–42 (2019). https://doi.org/10.1145/3236009

    Article  Google Scholar 

  21. Ribeiro, M.T., Singh, S., Guestrin, C.: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  22. Chen, H., Lundberg, S., Lee, S.I.: arXiv preprint arXiv:1911.11888 (2019)

  23. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.:Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  24. Zhang, Y., Sreedharan, S.,  Kulkarni, A., Chakraborti, T., Zhuo, H.H., Kambhampati, S.: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1313–1320. IEEE (2017)

    Google Scholar 

  25. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice-Hall, New York (2010)

    MATH  Google Scholar 

  26. Reiter, R.: Artif. Intell. 32, 57 (1987)

    Article  Google Scholar 

  27. Hamscher, W., Console, L., de Kleer, J. (eds.): Readings in Model-Based Diagnosis. Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

  28. Poole, D.: Proceedings of IJCAI-89, Sridharan, N.S. (ed.), pp. 1304–1310. Morgan Kaufmann (1989)

    Google Scholar 

  29. Bessiere, C., Raedt, L.D., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreshi, D. (eds.) Data Mining and Constraint Programming. Foundations of a Cross-Disciplinary Approach. Lecture Notes in Artificial Intelligence, vol. 10101. Springer International Publishing (2016)

    Google Scholar 

  30. Ligęza, A., Kościelny, J.M.: Int. J. Appl. Math. Comput. Sci. 18(4), 465 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Ligęza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ligęza, A. et al. (2021). Explainable Artificial Intelligence. Model Discovery with Constraint Programming. In: Stettinger, M., Leitner, G., Felfernig, A., Ras, Z.W. (eds) Intelligent Systems in Industrial Applications. ISMIS 2020. Studies in Computational Intelligence, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-030-67148-8_13

Download citation

Publish with us

Policies and ethics