Skip to main content

A Convolutional Neural Network Approach for Stratigraphic Interface Detection

  • Conference paper
  • First Online:
IoT as a Service (IoTaaS 2020)

Abstract

Making full use of the remaining oil-gas resources is a practical and feasible way to solve the problem of oil shortage. And the most important step of this method is the accurate detection of stratigraphic interface. In this paper, we propose a Convolutional Neural Network (CNN) approach for stratigraphic interface detection from the geophysical well logging data. Our proposed approach can automatically extract representative features from well logs data. It can reduce errors caused by human factors such as manual randomness and lack of experience. First of all, we normalize the data in the form of a single point of the well logging data and convert data points to 2D segment. We then feed segments into the CNN model for training. Secondly, we predict the formation of the well logging data using the trained model. Finally, we introduce a post-processing method to perform the stratigraphic interface detection. The experimental results demonstrate the proposed approach is able to achieve \(89.69\%\) of the average accuracy of stratigraphic interface detection. Moreover, the relative error between the predicted boundary points with the ground-truth is only \(1\%\), which indicates the proposed approach satisfy the real-world application requirements.

This work was supported in part by the National Key R&D Program of China (No. 2018AAA0102801 and No. 2018AAA0102803), in part of the National Natural Science Foundation of China (No. 61772424, No. 61702418, and No. 61602383), and in part by 13th Five-Year Plan of China National Petroleum Corporation Limited (2019A-3610).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  2. Zhou, C., Ouyang, J., Ming, W., et al.: A stratigraphic prediction method based on machine learning. Appl. Sci. 9(17), 3553 (2019)

    Article  Google Scholar 

  3. He, M., Gu, H., Wan, H.: Log interpretation for lithology and fluid identification using deep neural network combined with MAHAKIL in a tight sandstone reservoir. J. Pet. Sci. Eng. 194, 107498 (2020)

    Google Scholar 

  4. Qiao, J., Pan, M., Li, Z., et al.: 3D Geological modeling from DEM, boreholes, cross-sections and geological maps (2011)

    Google Scholar 

  5. Caumon, G., Mallet, J.: 3D Stratigraphic models: representation and stochastic modelling (2018)

    Google Scholar 

  6. Hawkins, D.M., Merriam, D.F.: Optimal zonation of digitized sequential data. Math. Geol. 5, 389–395 (1973)

    Article  Google Scholar 

  7. Hawkins, D.M., Merriam, D.F.: Zonation of multivariate sequences of digitized geologic data. Math. Geol. 6, 263–269 (1974)

    Article  Google Scholar 

  8. McIntyre, R.M., Blashfield, R.K.: A nearest-centroid technique for evaluating the minimum-variance clustering procedure. Multivar. Behav. Res. 15(2), 225–238 (1980)

    Article  Google Scholar 

  9. Hathaway, R.J., Bezdek, J.C.: Local convergence of the fuzzy c-Means algorithms. Pattern Recogn. 19(6), 477–480 (1986)

    Article  Google Scholar 

  10. Shahab, M.: Virtual-intelligence applications in petroleum engineering: part 1-artificial neural networks. J. Petrol. Technol. 52(9), 64–73 (2000)

    Article  Google Scholar 

  11. Hecht-Nielsen, R.: Theory of the backpropagation neural network. Neural Netw. (1988)

    Google Scholar 

  12. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  13. Hubek, D., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    Article  Google Scholar 

  14. Le, Q.V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of rectified linear units. Comput. Sci. (2015)

    Google Scholar 

  15. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. J. Mach. Learn. Res. 15, 315–323 (2011)

    Google Scholar 

  16. Srivastava, N., Hinton, G., Krizhevsky, A., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci. (2014)

    Google Scholar 

  18. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 257–269 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Chiou-Jye, H., Ping-Huan, K.: A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities. Sensors 18(7), 2220 (2018)

    Google Scholar 

  20. Xin-Hu, L.I.: Study on well logging curve shape automatic identification method. Pet. Geol. Oilfield Dev. Daqing (2006)

    Google Scholar 

  21. Dharmawardhana, H.P.K., Keller, G.V.: Statistical method for the determination of zone boundaries using well log data. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1985)

    Google Scholar 

  22. Kerzner, M.G.: An analytical approach to detailed dip determination using frequency analysis. In: SPWLA 23rd Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts (1982)

    Google Scholar 

  23. Kerzner, M.G., Frost Jr., E.: Blocking-a new technique for well log interpretation. J. Petrol. Technol. 36(02), 267–275 (1984)

    Article  Google Scholar 

  24. Lanning, E.N., Johnson, D.M.: Automated identification of rock boundaries: an application of the Walsh transform to geophysical well-log analysis. Geophysics 48(2), 197–205 (1983)

    Article  Google Scholar 

  25. Maiti, S., Tiwari, R.K.: Automatic detection of lithologic boundaries using the Walsh transform: a case study from the KTB borehole. Comput. Geosci. 31(8), 949–955 (2005)

    Article  Google Scholar 

  26. Pan, S.Y., Hsieh, B.Z., Lu, M.T., et al.: Identification of stratigraphic formation interfaces using wavelet and Fourier transforms. Comput. Geosci. 34(1), 77–92 (2008)

    Article  Google Scholar 

  27. Wu, X., Nyland, E.: Automated stratigraphic interpretation of well-log data. Geophysics 52(12), 1665–1676 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanwen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Li, G., Zhang, J., Zhang, G., Zhou, W. (2021). A Convolutional Neural Network Approach for Stratigraphic Interface Detection. In: Li, B., Li, C., Yang, M., Yan, Z., Zheng, J. (eds) IoT as a Service. IoTaaS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 346. Springer, Cham. https://doi.org/10.1007/978-3-030-67514-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67514-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67513-4

  • Online ISBN: 978-3-030-67514-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics