Skip to main content

The Design Methodology for MAC Strategies and Protocols Supporting Ultra-Low Delay Services in Next Generation IEEE 802.11 WLAN

  • Conference paper
  • First Online:
IoT as a Service (IoTaaS 2020)

Abstract

The next generation WiFi standard needs to consider how to better support ultra-low delay services. There are a lot of works proposed to improve the delay performance of traffic flows in WiFi networks. However, in order to face the high uncertainty of traffic arrival characteristics, it is necessary to explore new methodology to propose feasible Multiple Access Control (MAC) strategies and protocols supporting ultra-low delay services. This paper discusses the design methodology of ultra-low delay MAC strategies and protocols for next generation WiFi. Firstly, a general end-to-end transmission and processing model for an Information Transmission and Processing Network (ITPN) is proposed. The end-to-end delay of an ITPN is analyzed and the expression of the minimum end-to-end delay is obtained. Interestingly, based on the expression of the minimum end-to-end delay, we reveal three key factors that determine the end-to-end delay, namely, the number of processing blocks of the system, the size of information blocks processed and the total processing bandwidth of the system. Furthermore, some key technologies are proposed, which points out the feasible and attractive directions for the follow-up researches. Finally, a general ultra-low delay MAC framework based on the idea of “flexible reservation” is proposed. We believe that apart from IEEE 802.11 WLAN, the MAC framework proposed in this paper can be readily applied to various kinds of wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE 802.11ax Task Group. Project authorization request. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment: Enhancements for Extremely High Throughput (EHT), pp. 1–2 (2019)

    Google Scholar 

  2. Saheb, S.M., Bhattacharjee, A.K., Dharmasa, P., et al.: Enhanced hybrid coordination function controlled channel access-based adaptive scheduler for delay sensitive traffic in IEEE 802.11e networks. IET Netw. 1(4), 281–288 (2012)

    Article  Google Scholar 

  3. Pei, C., Zhao, Y., Liu, Y., et al.: Latency-based WiFi congestion control in the air for dense WiFi networks. In: 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE (2017)

    Google Scholar 

  4. Li, M., Tan, P.H., Sun, S., et al.: QoE-aware scheduling for video streaming in 802.11 n/ac-based high user density networks. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2016)

    Google Scholar 

  5. Prabhu, H.V., Nagaraja, G.S.: Delay-sensitive smart polling in dense IEEE 802.11n network for quality of service. IUP J. Telecommun. 10(1), 7–19 (2018)

    Google Scholar 

  6. Ahn, J., Kim, Y.Y., Kim, R.Y.: Delay oriented VR mode WLAN for efficient wireless multi-user virtual reality device. In: 2017 IEEE International Conference on Consumer Electronics (ICCE), pp. 122–123. IEEE (2017)

    Google Scholar 

  7. Qian, X., Wu, B., Ye, T.C.: QoS-aware A-MPDU retransmission scheme for 802.11 n/ac/ad WLANS. IEEE Commun. Lett. 21(10), 2290–2293 (2017)

    Article  Google Scholar 

  8. Zheng, H., Chen, G., Yu, L.: Video transmission over IEEE 802.11n WLAN with adaptive aggregation scheme. In: 2010 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–5. IEEE (2010)

    Google Scholar 

  9. Hajlaoui, N., Jabri, I., Taieb, M., et al.: A frame aggregation scheduler for QoS-sensitive applications in IEEE 802.11n WLANs. In: 2012 International Conference on Communications and Information Technology (ICCIT), pp. 221–226. IEEE (2012)

    Google Scholar 

  10. Charfi, E., Gueguen, C., Chaari, L., et al.: Dynamic frame aggregation scheduler for multimedia applications in IEEE 802.11n networks. Trans. Emerg. Telecommun. Technol. 28(2), e2942 (2017)

    Article  Google Scholar 

  11. Azhari, S.V., Gürbüz, Ö., Ercetin, O., et al.: Delay sensitive resource allocation over high speed IEEE802. 11 wireless LANs. Wireless Netw. 26(3), 1949–1968 (2018)

    Google Scholar 

  12. Avdotin, E., Bankov, D., Khorov, E., et al.: Enabling massive real-time applications in IEEE 802.11 be networks. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6. IEEE (2019)

    Google Scholar 

  13. Avdotin, E., Bankov, D., Khorov, E., et al.: OFDMA resource allocation for real-time applications in IEEE 802.11 ax networks. In: 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–3. IEEE (2019)

    Google Scholar 

  14. Kim, D., Yeom, I., Lee, T.J.: Mitigating tail latency in IEEE 802.11–based networks. Int. J. Commun. Syst. 31(1), e3404 (2018)

    Article  Google Scholar 

  15. Nguyen, S.H., Vu, H.L., Andrew, L.L.H.: Service differentiation without prioritization in IEEE 802.11 WLANs. IEEE Trans. Mob. Comput. 12(10), 2076–2090 (2012)

    Article  Google Scholar 

  16. Tian, G., Camtepe, S., Tian, Y.C.: A deadline-constrained 802.11 MAC protocol with QoS differentiation for soft real-time control. IEEE Trans. Ind. Inform. 12(2), 544–554 (2016)

    Article  Google Scholar 

  17. Lin, P., Chou, W.I., Lin, T.: Achieving airtime fairness of delay-sensitive applications in multirate IEEE 802.11 wireless LANs. IEEE Commun. Mag. 49(9), 169–175 (2011)

    Article  Google Scholar 

  18. Syed, I., Roh, B.: Delay analysis of IEEE 802.11e EDCA with enhanced QoS for delay sensitive applications. In: 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC), pp. 1–4. IEEE (2016)

    Google Scholar 

  19. Wu, C., Ohzahata, S., Ji, Y., et al.: A MAC protocol for delay-sensitive VANET applications with self-learning contention scheme. In: 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC), pp. 438–443. IEEE (2014)

    Google Scholar 

  20. Rentschler, M., Laukemann, P.: Towards a reliable parallel redundant WLAN black channel. In: 2012 9th IEEE International Workshop on Factory Communication Systems, pp. 255–264. IEEE (2012)

    Google Scholar 

  21. Halloush, R.D.: Transmission early-stopping scheme for anti-jamming over delay-sensitive IoT applications. IEEE Internet Things J. 6(5), 7891–7906 (2019)

    Article  Google Scholar 

  22. Pei, C., Zhao, Y., Chen, G., et al.: WiFi can be the weakest link of round trip network latency in the wild. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)

    Google Scholar 

  23. Cheng, Y., Yang, D., Zhou, H.: Det-LB: a load balancing approach in 802.11 wireless networks for industrial soft real-time applications. IEEE Access 6, 32054–32063 (2018)

    Article  Google Scholar 

  24. Choi, J., Yoo, J., Choi, S., Kim, C.: EBA: an enhancement of the IEEE 802.11 DCF via distributed reservation. IEEE Trans. Mob. Comput. 4(4), 378–390 (2005)

    Article  Google Scholar 

  25. Li, B., Tang, W., Zhou, H., et al.: m-DIBCR: MAC protocol with multiple-step distributed in-band channel reservation. IEEE Commun. Lett. 12(1), 23–25 (2008)

    Article  Google Scholar 

  26. Li, B., Li, W., Valois, F., et al.: Performance analysis of an efficient MAC protocol with multiple-step distributed in-band channel reservation. IEEE Trans. Veh. Technol. 59(1), 368–382 (2009)

    Google Scholar 

  27. Singh, S., Acharya, P.A.K., Madhow, U., Belding-Royer, E.M.: Sticky CSMA/CA: implicit synchronization and real-time QoS in mesh networks. Ad Hoc Netw. 5, 744–768 (2007)

    Article  Google Scholar 

  28. Joe, I.: QoS-aware MAC with reservation for mobile ad-hoc networks. In: IEEE 60th Vehicular Technology Conference, VTC 2004-Fall (2004)

    Google Scholar 

  29. Sheu, S., Sheu, T.: A bandwidth allocation/sharing/extension protocol for multimedia over IEEE 802.11 ad hoc wireless LANs. IEEE J. Sel. Areas Commun. 19, 2065–2080 (2001)

    Article  Google Scholar 

  30. Ahn, C.W., Kang, C.G., Cho, Y.Z.: Soft reservation multiple access with priority assignment (SRMA/PA): a novel MAC protocol for QoS-guaranteed integrated services in mobile ad-hoc networks. In: Vehicular Technology Conference Fall 2000, IEEE VTS Fall VTC2000, 52nd Vehicular Technology Conference (Cat. No. 00CH37152), vol. 2, pp. 942–947. IEEE (2000)

    Google Scholar 

  31. Jiang, S., Rao, J., He, D., et al.: A simple distributed PRMA for MANETs. IEEE Trans. Veh. Technol. 51(2), 293–305 (2002)

    Article  Google Scholar 

  32. Bankov, D., Khorov, E., Lyakhov, A., et al.: Enabling real-time applications in Wi-Fi networks. Int. J. Distrib. Sens. Netw. 15(5), 1550147719845312 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundations of China (Grant No. 61771390, No. 61871322, No. 61771392, and No. 61501373), and Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China (Grant No. 20185553035, and No. 201955053002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B., Mohammed, G.A.A., Yang, M., Yan, Z. (2021). The Design Methodology for MAC Strategies and Protocols Supporting Ultra-Low Delay Services in Next Generation IEEE 802.11 WLAN. In: Li, B., Li, C., Yang, M., Yan, Z., Zheng, J. (eds) IoT as a Service. IoTaaS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 346. Springer, Cham. https://doi.org/10.1007/978-3-030-67514-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67514-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67513-4

  • Online ISBN: 978-3-030-67514-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics