Skip to main content

Towards Accurate Search for E-Commerce in Steel Industry: A Knowledge-Graph-Based Approach

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2020)

Abstract

Mature artificial intelligence (AI) makes human life more and more convenient. However, in some application fields, it is impossible to achieve the satisfactory results only depending on the traditional AI algorithm. Specifically, in order to avoid the limitations of traditional searching strategies in e-commerce field related to steel, such as the inability to analyzing long technical sentences, we propose a collaborative decision making method in this field, through the combination of deep learning algorithms and expert systems. Firstly, we construct a knowledge graph (KG) on the basis of steel commodity data and expert database, and then train a model to accurately extract steel entities from long technical sentences, while using an advanced bidirectional encoder representation from transformers (BERT), a bidirectional long short-term memory (Bi-LSTM), and a conditional random field (CRF) approach. Finally, we develop an intelligent searching system for e-commence in steel industry, with the help of the designed KG and entity extraction model, while improving the searching performance and user experience in such system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benali, M., Ghomari, A.R., Zemmouchi-Ghomari, L., Lazar, M.: Crowdsourcing-enabled crisis collaborative decision making. Int. J. e-Collaboration 16(3), 49–72 (2020)

    Article  Google Scholar 

  2. Campbell, C., Roth, W., Jornet, A.: Collaborative design decision-making as social process. Eur. J. Eng. Educ. 44(3), 294–311 (2019)

    Article  Google Scholar 

  3. Chun, S., Shulman, S., Sandoval, R., et al.: Government 2.0: making connections between citizens, data and government. Inf. Polity 15(1), 1–9 (2010)

    Google Scholar 

  4. Kapucu, N., Arslan, T., Demiroz, F.: Collaborative emergency management and national emergency management network. Disaster Prev. Manage. 19(4), 452–468 (2010)

    Article  Google Scholar 

  5. Lyndon, M., Angela, C.: Collaboration in health care. J. Med. Imaging Radiat. Sci. 48(2), 207–216 (2017)

    Article  Google Scholar 

  6. Hsiao, F., Zeiser, S., Nuss, D., Hatschek, K.: Developing effective academic accommodations in higher education: a collaborative decision-making process. Int. J. Music Educ. 36(2), 244–258 (2018)

    Article  Google Scholar 

  7. MacDonald, A., Clarke, A., Huang, L.: Multi-stakeholder partnerships for sustainability: designing decision-making processes for partnership capacity. J. Bus. Ethics 160(2), 409–426 (2019)

    Article  Google Scholar 

  8. Peng, P., Li, Y., Zhou, L.: Research on interactive collaborative decision-making method of equipment support task planning. In: 5th International Conference on Computer and Communication Systems, pp. 533–537. IEEE, Shanghai (2020)

    Google Scholar 

  9. Ebisu, T., Ichise, R.: Generalized translation-based embedding of knowledge graph. IEEE Trans. Knowl. Data Eng. 32(5), 941–951 (2020)

    Article  Google Scholar 

  10. Liu, Q., Li, Y., Duan, H., Liu, Y., Qin, Z.: Knowledge graph construction techniques. J. Comput. Res. Dev. 53(3), 582–600 (2016)

    Google Scholar 

  11. Van Luijt, B., Verhagen, M.: Bringing semantic knowledge graph technology to your data. IEEE Softw. 37(2), 89–94 (2020)

    Article  Google Scholar 

  12. Zhou, J., Sun, X., Yu, X., Bian, X.: Knowledge graph and data application: intelligent recommendation. Telecommun. Sci. 35(8), 165–172 (2019)

    Google Scholar 

  13. Jin, G., Lü, F., Xiang, Z.: Enterprise information integration based on knowledge graph and semantic web technology. J. SE Univ. (Nat. Sci. Edn.) 44(2), 250–255 (2014)

    Google Scholar 

  14. Zhang, X., Liu, X., Li, X., Pan, D.: MMKG: An approach to generate metallic materials knowledge graph based on DBpedia and Wikipedia. Comput. Phys. Commun. 211(2), 98–112 (2017)

    Article  Google Scholar 

  15. Mrdjenovich, D., Horton, M., Montoya, J.H., Legaspi, C.M., Dwaraknath, S., Tshitoyan, V., Jain, A., Persson, K.A.: Propnet: a knowledge graph for materials science. Matter 2(2), 464–480 (2020)

    Article  Google Scholar 

  16. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186. ACL, Minneapolis, MN, USA (2018)

    Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Lafferty, J., Mccallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: 18th International Conference on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  19. Steiner, T., Verborgh, R., Troncy, R., Gabarro, J., Van De Walle, R.: Adding realtime coverage to the Google knowledge graph. In: ISWC Posters and Demonstrations Track, pp. 65–68. CEUR-WS, Boston (2012)

    Google Scholar 

  20. He, P.: Counter Cyber Attacks by Semantic Networks: Emerging Trends in ICT Security. Morgan Kaufmann, Boston (2014)

    Book  Google Scholar 

  21. Rahman, A.: Knowledge representation: a semantic network approach. Handbook of Research on Computational Intelligence Applications in Bioinformatics (2016)

    Google Scholar 

  22. Zhang, Y., Liu, X., Bai, X., Yin, J.: Collaborative research on intelligence perception and characterization of search engines. J. Beijing Inf. Sci. Technol. Univ. 34(6), 19–24 (2019)

    Google Scholar 

  23. Huang, H., Yu, J., Liao, X., Xi, Y.: Review on knowledge graphs. Comput. Syst. Appl. 28(6), 1–12 (2019)

    Google Scholar 

  24. Paulheim, H., Cimiano, P.: Knowledge graph refinement: a survey of approaches and evaluation methods. Seman. Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  25. Zhang, Y., Dai, H., Kozareva, Z., Smola, A.J., Song, L.: Variational reasoning for question answering with knowledge graph. In: 32nd AAAI Conference on Artificial Intelligence, pp. 6069–6076. AAAI Press, New Orleans (2018)

    Google Scholar 

  26. Grishman, R., Sundheim, B.: Message understanding conference-6: a brief history. In: 16th International Conference on Computational Linguistics, pp. 466–471, Copenhagen (1996)

    Google Scholar 

  27. Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition from deep learning models. In: 27th International Conference on Computational Linguistics, pp. 2145–2158. ACL, New Mexico (2018)

    Google Scholar 

  28. Goyal, A., Gupta, V., Kumar, M.: Recent named entity recognition and classification techniques: a systematic review. Comput. Sci. Rev. 29, 21–43 (2018)

    Article  Google Scholar 

  29. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. arXiv:1812.09449 (2018)

  30. Tata, S., Patel, J.: Estimating the selectivity of tf-idf based cosine similarity predicates. ACM SIGMOD Rec. 36(4), 7–12 (2007)

    Article  Google Scholar 

  31. Albitar, S., Fournier, S., Espinasse, B.: An effective TF/IDF-Based text-to-text semantic similarity measure for text classification. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 8786, pp. 105–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11749-2_8

    Chapter  Google Scholar 

  32. De Boom, C., Van Canneyt, S., Bohez, S., Demeester, T., Dhoedt, B.: Learning semantic similarity for very short texts. In: IEEE International Conference on Data Mining Workshop, Atlantic City, NJ, USA, pp. 1229–1234. IEEE, New York (2015)

    Google Scholar 

  33. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: 26th International Conference on Neural Information Processing Systems, Nevada, pp. 3111–3119 (2013)

    Google Scholar 

  34. Wu, C., Wang, B.: Extracting topics based on Word2Vec and improved Jaccard similarity coefficient. In: IEEE Second International Conference on Data Science in Cyberspace, Shenzhen, China, pp. 389–397. IEEE, New York (2017)

    Google Scholar 

  35. Kenter, T., Rijke, M.: Short text similarity with word embeddings. In: 24th ACM International on Conference on Information and Knowledge Management, pp. 1411–1420. ACM (2015)

    Google Scholar 

  36. Huang, G., Guo, C., Kusner, M., Sun, Y., Weinberger, K.Q., Sha, F.: Supervised word mover’s distance. In: 30th Conference on Neural Information Processing Systems. Neural Information Processing Systems Foundation, Barcelona, Spain, pp. 4862–4870 (2016)

    Google Scholar 

  37. Blanco, E., Moldovan, D.: A semantic logic-based approach to determine textual similarity. IEEE/ACM Trans. Audio Speech Lang. Processing 23(4), 683–693 (2015)

    Article  Google Scholar 

  38. Smarandache, F., Colhon, M., Vlăduţescu, Ş., Negrea, X.: Word-level neutrosophic sentiment similarity. Appl. Soft Comput. 80, 167–176 (2019)

    Article  Google Scholar 

  39. Lee, Y., Ke, H., Yen, T., Huang, H., Chen, H.: Combining and learning word embedding with WordNet for semantic relatedness and similarity measurement. J. Assoc. Inf. Sci. Technol. 71(6), 657–670 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Key R&D Program of China under Grant 2016YFC0600510, in part by the Beijing Natural Science Foundation under Grant 19L2029, in part by the Beijing Intelligent Logistics System Collaborative Innovation Center under Grant BILSCIC-2019KF-08, in part by the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB, under Grant BK19BF006, and in part by the Fundamental Research Funds for the University of Science and Technology Beijing under Grant FRF-BD-19-012A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, M., Shen, H., Huang, Z., Luo, X., Yin, J. (2021). Towards Accurate Search for E-Commerce in Steel Industry: A Knowledge-Graph-Based Approach. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 349. Springer, Cham. https://doi.org/10.1007/978-3-030-67537-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67537-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67536-3

  • Online ISBN: 978-3-030-67537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics