Skip to main content

Boosting the Performance of Object Detection CNNs with Context-Based Anomaly Detection

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2020)

Abstract

In this paper, we employ anomaly detection methods to enhance the ability of object detectors by using the context of their detections. This has numerous potential applications from boosting the performance of standard object detectors, to the preliminary validation of annotation quality, and even for robotic exploration and object search. We build our method on autoencoder networks for detecting anomalies, where we do not try to filter incoming data based on anomality score as is usual, but instead, we focus on the individual features of the data representing an actual scene. We show that one can teach autoencoders about the contextual relationship of objects in images, i.e. the likelihood of co-detecting classes in the same scene. This can then be used to identify detections that do and do not fit with the rest of the current observations in the scene. We show that the use of this information yields better results than using traditional thresholding when deciding if weaker detections are actually classed as observed or not. The experiments performed not only show that our method significantly improves the performance of CNN object detectors, but that it can be used as an efficient tool to discover incorrectly-annotated images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  2. Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–2883 (2016)

    Google Scholar 

  3. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115 (1987)

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  5. Board, T.N.T.S.: Collision between vehicle controlled by developmental automated driving system and pedestrian, Tempe, Arizona, p. 78, 18 March 2018

    Google Scholar 

  6. Chen, X., Gupta, A.: Spatial memory for context reasoning in object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4086–4096 (2017)

    Google Scholar 

  7. Creswell, A., Arulkumaran, K., Bharath, A.A.: On denoising autoencoders trained to minimise binary cross-entropy. arXiv:1708.08487 [cs, stat] October 2017

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Divvala, S.K., Hoiem, D., Hays, J.H., Efros, A.A., Hebert, M.: An empirical study of context in object detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1271–1278. IEEE (2009)

    Google Scholar 

  10. Dutta, A., Zisserman, A.: The VGG image annotator (via). arXiv preprint arXiv:1904.10699 (2019)

  11. Galleguillos, C., Belongie, S.: Context based object categorization: a critical survey. Comput. Vis. Image Understand. 114(6), 712–722 (2010)

    Article  Google Scholar 

  12. Gehring, J., Miao, Y., Metze, F., Waibel, A.: Extracting deep bottleneck features using stacked auto-encoders. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3377–3381, May 2013. DOIurl10.1109/ICASSP.2013.6638284. ISSN: 2379-190X

    Google Scholar 

  13. George Broughton, J.B.: Auto image anomaly (2020). https://github.com/broughtong/Auto-Image-Anomaly

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)

    Google Scholar 

  16. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37(2), 233–243 (1991). https://doi.org/10.1002/aic.690370209. https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Lin, T.Y., et al.: Microsoft COCO: common objects in context. arXiv:1405.0312 [cs] February 2015

  19. Lin, T.-Y.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, Y., Wang, R., Shan, S., Chen, X.: Structure inference net: object detection using scene-level context and instance-level relationships. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6985–6994 (2018)

    Google Scholar 

  21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  22. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, p. 4. ACM (2014)

    Google Scholar 

  23. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis - MLSDA 2014, Gold Coast, Australia QLD, Australia, pp. 4–11. ACM Press (2014). https://doi.org/10.1145/2689746.2689747. http://dl.acm.org/citation.cfm?doid=2689746.2689747

  24. Santos, J.M., Krajník, T., Fentanes, J.P., Duckett, T.: Lifelong information-driven exploration to complete and refine 4-d spatio-temporal maps. IEEE Robot. Autom. Lett. 1(2), 684–691 (2016). https://doi.org/10.1109/LRA.2016.2516594

    Article  Google Scholar 

  25. Santos, J.M., Krajník, T., Duckett, T.: Spatio-temporal exploration strategies for long-term autonomy of mobile robots. Robot. Auton. Syst. 88(C), 116–126 (2017)

    Google Scholar 

  26. Shrivastava, A., Gupta, A.: Contextual priming and feedback for faster R-CNN. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 330–348. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_20

    Chapter  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  29. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning - ICML 2008, Helsinki, Finland, pp. 1096–1103. ACM Press (2008). https://doi.org/10.1145/1390156.1390294. http://portal.acm.org/citation.cfm?doid=1390156.1390294

  30. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv:1212.5701 [cs] December 2012

  31. Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1265–1274 (2015)

    Google Scholar 

  32. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2017, Halifax, NS, Canada, pp. 665–674. ACM Press (2017). https://doi.org/10.1145/3097983.3098052. http://dl.acm.org/citation.cfm?doid=3097983.3098052

  33. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674. ACM (2017)

    Google Scholar 

  34. Zhu, Y., Urtasun, R., Salakhutdinov, R., Fidler, S.: segDeepM: exploiting segmentation and context in deep neural networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4703–4711 (2015)

    Google Scholar 

  35. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018)

    Google Scholar 

Download references

Acknoledgement

The authors acknowledge the support of the Czech Science Foundation project “Towards long-term autonomy through introduction of the temporal domain into spatial representations used in robotics “20-27034J”. The calculations were performed using computational resources provided by the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Blaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blaha, J., Broughton, G., Krajník, T. (2021). Boosting the Performance of Object Detection CNNs with Context-Based Anomaly Detection. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 349. Springer, Cham. https://doi.org/10.1007/978-3-030-67537-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67537-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67536-3

  • Online ISBN: 978-3-030-67537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics