Abstract
Due to the development of 5G networks, computation intensive applications on mobile devices have emerged, such as augmented reality and video stream analysis. Mobile edge computing is put forward as a new computing paradigm, to meet the low-latency requirements of applications, by moving services from the cloud to the network edge like base stations. Due to the limited storage space and computing capacity of an edge server, service placement is an important issue, determining which services are deployed at edge to serve corresponding tasks. The problem becomes particularly complicated, with considering the stochastic arrivals of tasks, the additional latency incurred by service migration, and the time spent for waiting in queues for processing at edge. Benefiting from reinforcement learning, we propose a deep Q network based approach, by formulating service placement as a Markov decision process. Real-time service placement strategies are output, to minimize the total latency of arrived tasks in a long term. Extensive simulation results demonstrate that our approach works effectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aissioui, A., Ksentini, A., Gueroui, A.M., Taleb, T.: On enabling 5G automotive systems using follow me edge-cloud concept. IEEE Trans. Veh. Technol. 67(6), 5302–5316 (2018)
Al-Shuwaili, A., Simeone, O.: Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wirel. Commun. Lett. 6(3), 398–401 (2017)
Ascigil, O., Phan, T.K., Tasiopoulos, A.G., Sourlas, V., Psaras, I., Pavlou, G.: On uncoordinated service placement in edge-clouds. In: 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pp. 41–48. IEEE (2017)
Farhadi, V., et al.: Service placement and request scheduling for data-intensive applications in edge clouds. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1279–1287. IEEE (2019)
Gao, B., Zhou, Z., Liu, F., Xu, F.: Winning at the starting line: joint network selection and service placement for mobile edge computing. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1459–1467. IEEE (2019)
He, T., Khamfroush, H., Wang, S., La Porta, T., Stein, S.: It’s hard to share: joint service placement and request scheduling in edge clouds with sharable and non-sharable resources. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 365–375. IEEE (2018)
Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a key technology towards 5G. ETSI White Paper 11(11), 1–16 (2015)
Ksentini, A., Taleb, T., Chen, M.: A Markov decision process-based service migration procedure for follow me cloud. In: 2014 IEEE International Conference on Communications (ICC), pp. 1350–1354. IEEE (2014)
Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: accelerometer-based personalized gesture recognition and its applications. Pervasive Mobile Comput. 5(6), 657–675 (2009)
Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Nadembega, A., Hafid, A.S., Brisebois, R.: Mobility prediction model-based service migration procedure for follow me cloud to support QoS and QoE. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)
Ouyang, T., Li, R., Chen, X., Zhou, Z., Tang, X.: Adaptive user-managed service placement for mobile edge computing: an online learning approach. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1468–1476. IEEE (2019)
Ouyang, T., Zhou, Z., Chen, X.: Follow me at the edge: mobility-aware dynamic service placement for mobile edge computing. IEEE J. Sel. Areas Commun. 36(10), 2333–2345 (2018)
Poularakis, K., Llorca, J., Tulino, A.M., Taylor, I., Tassiulas, L.: Joint service placement and request routing in multi-cell mobile edge computing networks. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 10–18. IEEE (2019)
Sutton, R., Barto, A.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)
Taleb, T., Ksentini, A., Frangoudis, P.: Follow-me cloud: when cloud services follow mobile users. IEEE Trans. Cloud Comput. PP, 1 (2016)
Wang, L., Jiao, L., He, T., Li, J., Mühlhäuser, M.: Service entity placement for social virtual reality applications in edge computing. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 468–476. IEEE (2018)
Wang, S., Dey, S.: Adaptive mobile cloud computing to enable rich mobile multimedia applications. IEEE Trans. Multimed. 15(4), 870–883 (2013)
Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992). https://doi.org/10.1007/BF00992698
Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading for mobile edge computing in dense networks. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 207–215. IEEE (2018)
Zeng, D., Gu, L., Pan, S., Cai, J., Guo, S.: Resource management at the network edge: a deep reinforcement learning approach. IEEE Netw. 33(3), 26–33 (2019)
Acknowledgement
This research is supported by NSFC (No. 61802245), the Shanghai Sailing Program (No. 18YF1408200), and STSCM (No. 19511121000). This work is also supported by the Open Project Program of Shanghai Key Laboratory of Data Science (No. 2020090600002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Jie, X., Liu, T., Gao, H., Cao, C., Wang, P., Tong, W. (2021). A DQN-Based Approach for Online Service Placement in Mobile Edge Computing. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-030-67540-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-67540-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67539-4
Online ISBN: 978-3-030-67540-0
eBook Packages: Computer ScienceComputer Science (R0)