Skip to main content

Utilizing Structure-Rich Features to Improve Clustering

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12457))

Abstract

For successful clustering, an algorithm needs to find the boundaries between clusters. While this is comparatively easy if the clusters are compact and non-overlapping and thus the boundaries clearly defined, features where the clusters blend into each other hinder clustering methods to correctly estimate these boundaries. Therefore, we aim to extract features showing clear cluster boundaries and thus enhance the cluster structure in the data. Our novel technique creates a condensed version of the data set containing the structure important for clustering, but without the noise-information. We demonstrate that this transformation of the data set is much easier to cluster for k-means, but also various other algorithms. Furthermore, we introduce a deterministic initialisation strategy for k-means based on these structure-rich features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We follow the argument given in [16] in regard to the explicit form of the derivative.

References

  1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding, SODA (2007)

    Google Scholar 

  2. Celebi, M., Kingravi, H., Vela, P.: A comparative study of efficient initialisation methods for the K-Means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)

    Article  Google Scholar 

  3. Chronis, P., Athanasiou, S., Skiadopoulos, S.: Automatic clustering by detecting significant density dips in multiple dimensions. In: ICDM (2019)

    Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum-Likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)

    Google Scholar 

  6. Goebl, S., He, X., Plant, C., Böhm, C.: Finding the optimal subspace for clustering. In: ICDM (2014)

    Google Scholar 

  7. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI (2017)

    Google Scholar 

  8. Hartigan, J.A., Hartigan, P.M.: The dip test of unimodality. Ann. Stat. 131, 70–84 (1985)

    Article  MathSciNet  Google Scholar 

  9. Jing, L., Ng, M.K., Huang, J.Z.: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. In: TKDE (2007)

    Google Scholar 

  10. Kalogeratos, A., Likas, A.: Dip-means: an incremental clustering method for estimating the number of clusters. In: NIPS (2012)

    Google Scholar 

  11. Krause, A., Liebscher, V.: Multimodal projection pursuit using the dip statistic, Preprint-Reihe Mathematik (2005)

    Google Scholar 

  12. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. In: TKDD (2009)

    Google Scholar 

  13. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (2008)

    Google Scholar 

  14. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on Math. Stat. and Prob. (1967)

    Google Scholar 

  15. McInnes, L., Healy, J., Melville, J.: Uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 (2018)

  16. Maurus, S., Plant, C.: Skinny-dip: clustering in a sea of noise. In: KDD (2016)

    Google Scholar 

  17. Mautz, D., Ye, W., Plant, C., Böhm, C.: Towards an optimal subspace for k-means. In: KDD (2017)

    Google Scholar 

  18. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: NIPS (2002)

    Google Scholar 

  19. Schelling, B., Plant, C.: DipTransformation: enhancing the structure of a dataset and thereby improving clustering. In: ICDM (2018)

    Google Scholar 

  20. Schelling, B., Plant, C.: Dataset-transformation: improving clustering by enhancing the structure with DipScaling and DipTransformation. In: KAIS (2019)

    Google Scholar 

  21. Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30–34 (1973)

    Article  MathSciNet  Google Scholar 

  22. Siffer, A., Fouque, P.A., Termier, A., Largouet, C.: Are your data gathered? In: KDD (2018)

    Google Scholar 

  23. Vinh, N.X., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. JMLR 11, 2837–2854 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Wu, H., Gu, X.: Max-Pooling dropout for regularization of convolutional neural networks. In: ICONIP (2015)

    Google Scholar 

  25. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML (2016)

    Google Scholar 

  26. Yang, B., Fu, X., Sidiropoulos, N.: Learning from hidden traits: joint factor analysis and latent clustering. IEEE Trans. Signal Process. (2017)

    Google Scholar 

  27. Yang, B., Fu, X., Sidiropoulos, N., Hong, M.: Towards K-means-friendly spaces: simultaneous deep learning and clustering. In: ICML (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schelling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schelling, B., Bauer, L.G.M., Behzadi, S., Plant, C. (2021). Utilizing Structure-Rich Features to Improve Clustering. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12457. Springer, Cham. https://doi.org/10.1007/978-3-030-67658-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67658-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67657-5

  • Online ISBN: 978-3-030-67658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics