Skip to main content

Inductive Generalized Zero-Shot Learning with Adversarial Relation Network

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12458))

Abstract

We consider the inductive Generalized Zero Shot Learning (GZSL) problem where test information is assumed unavailable during training. In lack of training samples and attributes for unseen classes, most existing GZSL methods tend to classify target samples as seen classes. To alleviate such problem, we design an adversarial Relation Network that favors target samples towards unseen classes while enjoying robust recognition for seen classes. Specifically, through the adversarial framework, we can attain a robust recognizer where a small gradient adjustment to the instance will not affect too much the classification of seen classes but substantially increase the classification accuracy on unseen classes. We conduct a series of experiments extensively on four benchmarks i.e., AwA1, AwA2, aPY, and CUB. Experimental results show that our proposed method can attain encouraging performance, which is higher than the best of state-of-the-art models by 10.8%, 14.0%, 6.9%, and 1.9% on the four benchmark datasets, respectively in the inductive GZSL scenario. (The code is available on https://github.com/ygyvsys/AdvRN-with-SR)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This division by 32 is due to the effect of batch size during the derivation in test process.

References

  1. Annadani, Y., Biswas, S.: Preserving semantic relations for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7603–7612 (2018)

    Google Scholar 

  2. Carlini, N., et al.: Hidden voice commands. In: 25th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 16). pp. 513–530 (2016)

    Google Scholar 

  3. Chao, W.-L., Changpinyo, S., Gong, B., Sha, F.: An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part II. LNCS, vol. 9906, pp. 52–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_4

    Chapter  Google Scholar 

  4. Eagleman, D.: Incognito: The Secret Lives of the Brain. Vintage Books, New York (2013)

    Google Scholar 

  5. Ebrahimi, J., Rao, A., Lowd, D., Dou, D.: Hotflip: White-box adversarial examples for text classification. arXiv preprint arXiv:1712.06751 (2017)

  6. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1778–1785 (2009)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  9. Huang, K., Hussain, A., Wang, Q.F., Zhang, R.: Deep Learning: Fundamentals, Theory and Applications. Springer, Cham (2019). ISBN 978-3-030-06072-5

    Book  Google Scholar 

  10. Jiang, H., Wang, R., Shan, S., Chen, X.: Transferable contrastive network for generalized zero-shot learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9765–9774 (2019)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  12. Kodirov, E., Xiang, T., Gong, S.: Semantic autoencoder for zero-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3174–3183 (2017)

    Google Scholar 

  13. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 453–465 (2014)

    Article  Google Scholar 

  14. Liu, Y., Guo, J., Cai, D., He, X.: Attribute attention for semantic disambiguation in zero-shot learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6698–6707 (2019)

    Google Scholar 

  15. Luo, C., Li, Z., Huang, K., Feng, J., Wang, M.: Zero-shot learning via attribute regression and class prototype rectification. IEEE Trans. Image Process. 27(2), 637–648 (2018)

    Article  MathSciNet  Google Scholar 

  16. Lyu, C., Huang, K., Liang, H.N.: A unified gradient regularization family for adversarial examples. In: 2015 IEEE International Conference on Data Mining, pp. 301–309. IEEE (2015)

    Google Scholar 

  17. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  18. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013)

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sariyildiz, M.B., Cinbis, R.G.: Gradient matching generative networks for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2168–2178 (2019)

    Google Scholar 

  21. Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T., Akata, Z.: Generalized zero-and few-shot learning via aligned variational autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8247–8255 (2019)

    Google Scholar 

  22. Shigeto, Y., Suzuki, I., Hara, K., Shimbo, M., Matsumoto, Y.: Ridge regression, hubness, and zero-shot learning. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015, Part I. LNCS (LNAI), vol. 9284, pp. 135–151. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23528-8_9

    Chapter  Google Scholar 

  23. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  24. Suzuki, M., Iwasawa, Y., Matsuo, Y.: Learning shared manifold representation of images and attributes for generalized zero-shot learning (2018). https://openreview.net/pdf?id=Hkesr205t7

  25. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  26. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  27. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204 (2017)

  28. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  29. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence (2018)

    Google Scholar 

  30. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5542–5551 (2018)

    Google Scholar 

  31. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1369–1378 (2017)

    Google Scholar 

  32. Zhang, H., Long, Y., Guan, Y., Shao, L.: Triple verification network for generalized zero-shot learning. IEEE Trans. Image Process. 28(1), 506–517 (2019)

    Article  MathSciNet  Google Scholar 

  33. Zhang, L., Xiang, T., Gong, S.: Learning a deep embedding model for zero-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2021–2030 (2017)

    Google Scholar 

  34. Zhang, S., Huang, K., Zhang, R., Hussain, A.: Generalized adversarial training in riemannian space. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 826–835 (2019)

    Google Scholar 

  35. Zhang, X., Gui, S., Zhu, Z., Zhao, Y., Liu, J.: Atzsl: Defensive zero-shot recognition in the presence of adversaries. arXiv preprint arXiv:1910.10994 (2019)

  36. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2847–2856 (2018)

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by the following: National Natural Science Foundation of China under no.61876155; Natural Science Foundation of Jiangsu Province BK20181189; Key Program Special Fund in XJTLU under no. KSF-A-01, KSF-T-06, KSF-E-26, KSF-P-02 and KSF-A-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaizhu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, G., Huang, K., Zhang, R., Goulermas, J.Y., Hussain, A. (2021). Inductive Generalized Zero-Shot Learning with Adversarial Relation Network. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12458. Springer, Cham. https://doi.org/10.1007/978-3-030-67661-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67661-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67660-5

  • Online ISBN: 978-3-030-67661-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics