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Abstract. Many machine learning models require a training procedure
based on running stochastic gradient descent. A key element for the
efficiency of those algorithms is the choice of the learning rate schedule.
While finding good learning rates schedules using Bayesian optimisation
has been tackled by several authors, adapting it dynamically in a data-
driven way is an open question. This is of high practical importance to
users that need to train a single, expensive model. To tackle this problem,
we introduce an original probabilistic model for traces of optimisers,
based on latent Gaussian processes and an auto-/regressive formulation,
that flexibly adjusts to abrupt changes of behaviours induced by new
learning rate values. As illustrated, this model is well-suited to tackle a
set of problems: first, for the on-line adaptation of the learning rate for a
cold-started run; then, for tuning the schedule for a set of similar tasks
(in a classical BO setup), as well as warm-starting it for a new task.

Keywords: Learning Rate · Gaussian Process · Variational Inference

1 Introduction

The great recent successes of machine learning generally rely on models with
high complexity (e.g. deep models) and extensive datasets. Those models usually
require running a training procedure over a (large) set of parameters, which
often amounts to minimising a loss function with an iterative algorithm such as
stochastic gradient descent (SGD) or the non-linear conjugate gradient method.
In the deep learning community, a particular focus has been given to SGD
algorithms such as Adagrad [9], RMSProp [39], and in particular Adam [1], which
despite recent discussions and improvements [23, 30] can be considered as the
state-of-the-art and is widely used in practice [12]. Unfortunately, this training
procedure is often extremely time-consuming due to the high model complexity
and the amount of data at hand; hence, performing it with the best possible
efficiency is paramount for many applications, in particular those for which
training is done repeatedly, or continuously, for example in streaming models.

The performance of nearly all SGD variants depend critically on the choice of
the learning rate level [3], which in short tunes by how much the algorithm should
follow the (noisy) gradient signal. The default choice for most algorithms is a
constant learning rate, although recent experiments showed that a time-varying
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value can be extremely beneficial [2, 33, 34]. In any case, learning rate values
require to be set, and tuning them by hand can be excessively burdensome.
Bayesian optimisation (BO), on the other hand, is now a well-established tool for
model selection and parameter tuning [4, 35]. While learning rates are sometimes
included in the parameters to be tuned [4], to our knowledge no work has been
dedicated to speeding up SGD algorithms on-the-fly using BO: this is the purpose
of the present work.

Let L : Θ × Ω → R be the objective optimised by SGD; typically in deep
learning, L can be a mean squared error or an evidence lower bound (ELBO)1.
θ ∈ Θ denotes a set of parameters, while ω ∈ Ω defines the learning task at hand,
that is, a particular model structure and a dataset. Ω is typically a singleton
(when a single model is fitted to a single dataset), or a discrete set, for instance
when the same model is used to fit different datasets. Given Ω, an SGD algorithm
produces a sequence of parameters θ0, . . . , θT , with T ∈ N∗ a pre-defined number
of iterations (i.e. optimisation steps).

In our setup we assume that the learning rate varies from one iteration to
the next. One way to parametrise it, which avoids working directly on a high-
dimensional vector of size T , is to use a piecewise constant form. Defining a
sequence of length d+ 1� T :

T0 = 0 < T1 < . . . < Td = T,

the learning rate curve γ(t) is defined by d constants x0, . . . , xd−1 such that

γ(t) = xk for Tk ≤ t < Tk+1, ∀t ∈ [0, T ], ∀0 ≤ k < d.

Assuming lower and upper bounds for xk, without loss of generality our tuning
parameters x ∈ X can be rescaled to [0, 1]d. For any task ω ∈ Ω, our objective is
to seek the best possible learning rate, that is, the one that maximises L after T
steps:

x∗ω = arg max
x∈X

L[θT (x, ω), ω], (1)

with θT (x, ω) the parameters returned after T iterations (now written as a
function of the learning rate schedule x and task ω).

Now, BO classically relies on Gaussian process (GP) surrogate models of the
function to optimise. While predicting trace (that is, the value of L for all t)
has been already addressed in related settings [28, 8, 19], adapting those models
to make them dependent on a learning rate that changes over time is often not
possible. Moreover, changing the learning rate often induces drastic changes on
the trace behaviour, which makes typical parametric models unfit for the task.
Our first contribution is the design of an auto-regressive model for the trace of a
SGD algorithm, that flexibly adjusts to abrupt changes of behaviours. The model,
which serves as a base for our sampling strategies, is presented in section 2.

In the classical BO setting [32], first an initial set of experiments, typically
with space-filling properties, {x1, ω1}, . . . , {xN0

, ωN0
} is run. The gathered data

1 In the following, without loss of generality we use the convention that L should be
maximised.
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would then be used to build a predictive model for L[θT (x, ω), ω], which would
allow us to estimate x∗ω. In BO, such estimate is gradually improved by designing
a sequence of additional experiments xN0+1, . . . ,xN that enhances the prediction
capability of the model, following an exploration / exploitation trade-off.

However, often times the user is faced with training a single model, without
much prior information on an appropriate choice of the learning rate schedule.
In that case, the relevance of BO is somehow debatable, as it is uncertain that
the outcome of N SGD runs would outperform a single but much longer one
with an empirically chosen learning rate. To overcome this, [38, 22, 10] used
forecasting models to stop early unpromising runs and drastically reduce the
computational cost of the BO loop. Yet, such approaches can only provide long-
term recommendation at the price of repeated long runs, and are mostly relevant
when other parameters are tuned simultaneously with the learning rate.

We propose here an alternative strategy, unexplored in the BO literature,
which is to adapt a single run on the fly rather than terminate some and start
new ones from scratch. In addition, as modern hardware architecture favours
parallel computing, we want to leverage the fact that training procedures can be
run in parallel (say, one on each available GPU). Section 3 is dedicated to this
problem.

In other practical situations, training is done repeatedly over similar tasks:
for instance the same model fitted to different datasets or different variations of a
model fitted to a dataset. In that case, one seeks an optimal mapping [or profile
optima, 11] Φ : Ω → X (from the space of tasks to the space of learning rates),
such that ∀ω ∈ Ω,Φ(ω) = x∗ω. Transferring information from one task to another
allows designing strategies much more efficient than running independent BO
loops for each task [37]. This framework is considered in section 4.

2 A GP-based NARX Model For Optimisation Traces

For simplicity, we focus for now on the case where Ω is a singleton (i.e. we
consider a single dataset and model) and remove the dependence on ω from our
notations. The generalisation to multiple tasks is deferred to section 4.

2.1 Modelling of Optimisation Traces

Define first

y(x, t) = L[θ(x, t)],

the trace of an optimisation run and denote by Yk = y(x, Tk) the trace value at
each changing point for the learning rate.

There exist many options to fit a parametric model to y(x, t): for instance, in
[8], 11 models for traces are proposed, including exponential forms (c−exp(−atα+
b)) and power ones (c − atα). While those forms make sense with a constant
learning rate, they cannot fit properly a varying one, as changing the learning rate



4 V. Picheny et al.

drastically modifies the trace dynamics. This is illustrated in fig. 2, left, where
the visible trace trend abruptly changes every time the learning rate changes (see
also fig. 4). Hence, instead of fitting a single parametric model, we propose to
use a composite one, based on an auto-regressive formulation.

First, we model Y0 as an i.i.d. Gaussian variable N (m0, σ
2
0), to account for

randomness in the starting point. Then, we propose to model the trace using a
non-linear auto-regressive model with exogenous inputs [NARX(q), 21], which
general expression is:

Yk+1 = Γ
(
{Yk−l}q−1l=0 , {xk−l}

q−1
l=0

)
+ εk,

where the new state is a non-linear function of the q past states and exogenous
inputs plus some independent noise. We propose a specific function for Γ as
follow:

Yk+1 = Yk + η
[
f
(
{Yk−l}q−1l=0 , {xk−l}

q−1
l=0

)
, Tk+1 − Tk

]
+ εk,

where f : R2q → Rp is a latent function that modulates the increments according
to the current and past trace values {Yk−l}q−1l=0 and learning rates {xk−l}q−1l=0 and
η : Rp+1 → R (or R+ to ensure the monotonicity of the trace) is a link function
that returns the trace increment for any given time t according to its parameters.
As the trace may be recorded for t values outside T0, T1, . . ., our model for the
trace is:

y(x, t) = Yk + η
[
f
(
{Yk−l}q−1l=0 , {xk−l}

q−1
l=0

)
, t− Tk

]
+ ε(t),

where Tk ≤ t < Tk+1 and ε(t) represents the noise in the case where the objective
function is not evaluated exactly and/or for unaccounted-for deviations between
observations and the model.

In the following, we use either piecewise linear or piecewise exponential forms
for the traces. With respectively f = f1 : R2q → R defining the linear slope and
f = (f1, f2) : R2q → R2 with f1 corresponding to a logit offset and f2 to a logit
rate, this gives:

ηlin(f, t) = φ(f1) t, (2)
ηexp(f, t) = φ(f1) (1− exp[−φ(f2) t]), (3)

where f is a (multi-output) GP and φ(·) is here the softplus function, φ(u) =
log(1+eu), to ensure monotonicity. Note that any of the parametric models of e.g.
[8] may be used here as η. In a sense, our model extend those for a time-varying
learning rate.

Focusing on the linear case, and setting q = 1, we have: y(x, t) = Yk +
φ[f1(Yk, xk)](t− Tk). We directly see the dynamic implied by our model: incre-
ments are linear with respect to time, but the slope depends non-linearly on an
exogenous input (the learning rate) and on the current state (intuitively, we ex-
pect flatter slopes if Yk is high, as the model is close to convergence). Considering
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Fig. 1. Consider the NARX(1) model of section 2 with the exponential link function
of eq. (3). On the left, we plot the mean ± the empirical std. dev. of the GP for the
increment factor φ(f1). On the right, we plot the GP surface of φ(f2) which models the
decay rate of the exponential. Given q = 1, both GPs are only a function of the most
previous trace value ‘starting point’ and the current learning rate ‘LR value’. These
surfaces are learned as part of experiment section 4.3. We notice, for example, that for
low starting values of the objective, the response η(f, t) behaves like a step-function.

the exponential case (eq. (3)) and setting q = 1, we show GP surfaces in fig. 1
for φ(f1) (left) and φ(f2) (right).

Importantly, the same η is used over all the time intervals and only depends
on t− Tk. Hence, in the NARX(1) case, our model implies that the same initial
conditions and learning rates would lead to the same outcome, regardless of the
time the algorithm has been run before. In that sense, the model can be considered
as Markovian, as it is independent of the path followed by the optimiser before
Tk. While our model is general for higher-order Markov chains (i.e. NARX(q)),
we found empirically that the current formulation provides the right trade-off
between accuracy, robustness and ease of inference, as the link function η is only
defined over R2.

Finally, we follow the chained GP framework [31] for f , and choose a GP
prior with independent components.

2.2 Learning f Using Variational Inference

We consider here a fixed link function, so the inference task boils down to
estimating the parameters of the function η and Y0 (the starting value of the
trace). Assume that we have run the optimiser N ≥ 1 times for different learning
rate schedules x1, . . . ,xN and recorded the trace of each run i at times ti1, . . . , timi

(in [T0, Td]). Let

yij = y(xi, tij) (1 ≤ i ≤ N, 1 ≤ j ≤ mi)

denote an observation of the trace at time tij for a learning rate schedule xi. We
assume that each trace is evaluated at the beginning of each time interval (i.e.
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Fig. 2. Left: four traces (top) corresponding to the training of an SVGP model using
Adam and corresponding learning rates. Middle: notations and model. Right: corre-
sponding data point locations for the latent GP.

∀i, k, ∃j s.t. tij = Tk), which gives explicit observations of Yk, which we denote
henceforth Y ik .

The parameters of Y0 ∼ N (m0, σ
2
0) can be inferred by maximum likeli-

hood from {Y 1
0 , . . . , Y

N
0 }. Now, we focus on learning the latent GP functions

f1, f2, . . . fp. Without loss of generality, we assume in the following that our link
function only requires a single GP parameter f (i.e. p = 1). When a link function
depends on more than one GP we simply apply the same procedure in parallel
and model every function independently.

We follow a fully Bayesian approach to infer f from the given dataset. We
place a GP prior on the latent function f and assume that ε is i.i.d. Gaussian
noise with zero mean and σ2 variance, so that:

f ∼ GP
(
0, k(·, ·)

)
and

yij | f, Y ik , xik, tij ∼ N
(
yij | η(f(xik, Y

i
k ), tij − T ik), σ2

)
,

with k such that Tk ≤ tij < Tk+1. For general link functions η is exact inference
of the latent function f not possible due to the non-linear transformation.

A classical solution is to follow the Sparse Variational GP (SVGP) framework
[40, 15], that relies on two components. First, it introduces a set of inducing
variables, which main use is to specify the function value of the posterior GP
at a specific set of m pseudo inputs Z = {zi}mi=1, denoted as u = f(Z). The
distribution of the inducing variables is specified by a fully parameterised Gaussian
q(u) = N (m,S) with mean m ∈ Rm and covariance S ∈ Rm×m, which are
the variational parameters we want to learn. The prior GP on f can then be
conditioned on u, which leads to a marginal posterior q(f) with mean µ(·) and
the variance Σ(·, ·):

µ(·) = k>Z (·)K−1ZZm and

Σ(·, ·) = k(·, ·) + k>Z (·)K−1ZZ(S−KZZ)K−1ZZkZ(·), (4)

where kZ(·) := [k(zi, ·)]mi=1 ∈ Rm and [KZZ]ij = k(zi, zj).
With this approximation in place we can set up our model’s optimisation

objective, which is a lower bound on the log marginal likelihood [ELBO, 16],
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equal to

N∑
i=1

mi∑
j=1

Eq(f)
[

logN
(
yij | η(f(xik, Y

i
k ), tij − T ik), σ2

)]
−KL

[
q(u)||p(u)

]
, (5)

where k s.t. Tk ≤ tij < Tk+1, and KL is the Kullback-Leibler divergence between
the approximate and the prior of f [24]. It can be calculated analytically given
the Gaussianity of both the prior and posterior on u. The expectation can be
estimated in an unbiased way using Monte-Carlo, by sampling q(f) (eq. (4))
and propagating the samples through the link-function. Optimising eq. (5) with
respect to the model parameters can be done by gradient descent thanks to
automatic differentiation toolkits.

In our experiments we made use of the GPflow library [25]. More precisely,
we used the provided multi-output framework for GPs [41], which is well-suited
for implementing and optimising of these complex, composite GP models.

Note that as the approximation is sparse (i.e. it relies on a few inducing
points), it can handle much larger datasets than classical GP models. This is a
decisive advantage here as traces typically contain thousands of datapoints.

2.3 Generating Trace Predictions

Since the main objective is to maximise L after T iterations, we would like to
predict

Yd = y(x, T ) = η(f(Yd−1, xd−1), Td − Td−1),

which requires access to Yd−1. Recursively, we see that predicting y(x, T ) is
achieved by predicting the corresponding sequence {Y0, . . . , Yd}. Importantly, the
distribution of {Y0, . . . , Yd} is not available analytically because of the arbitrary
link function. Hence, we must resort to sampling. Given the recursive structure
(the value of Yi is necessary to draw from Yi+1) we sample first Y0, then Y1 after
conditioning f on f(Y0, x0), and recursively sampling Yi+1 (1 ≤ i < d) after
conditioning f on f(Y0, x0), . . . , f(Yi, xi). Drawing multiple samples for a given
x may be used to provide any statistic of y(x, t), such as mean, variance and
quantiles.

3 Dynamic Tuning of the Learning Rate

We address now the question of dynamically tuning the learning rate for a single
model and task, using the model previously defined. To do so, we depart from
the standard BO approach, by modifying a small set of runs on the fly instead of
starting repeatedly new ones.

3.1 Proposed Strategy

We consider the following framework. We assume that Q SGD runs are performed
in parallel with different learning rates. For simplicity, we assume synchronicity
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(all runs progress with the same speed). Each run is conveyed independently over
time intervals [Tk, Tk+1]. At t = Tk+1, the Q traces are fed to the model, which
is then used to schedule Q new learning rates for the next interval.

The learning rates are chosen as follows. At initialisation, as there is no model
to help making decisions, x10, . . . , x

Q
0 are taken on a uniform grid between bounds.

At any Tk (k > 0), the current trace observations are first integrated into the
model. Then, each new learning rate xik is chosen to maximise the αi-quantile
qαi (computed here empirically by sampling) of the trace at the end of the next
interval:

xik = arg max
x∈[0,1]

qαi

[
η
(
f
(
yji , x

)
, Tk − Tk−1

)]
. (6)

The αi’s are used here to balance exploitation and exploration: αi’s close to one
may lead to very optimistic choices (learning rates for which the outcome is
highly uncertain) while αi’s close to zero result in risk-averse choices (guaranteed
immediate performance). Hence, to maximise our diversity of choices we set
α1 = 1

2Q , α2 = 3
2Q , . . . , αQ = 1 − 1

2Q . In the case Q = 1, this forces to choose
α = 0.5, which is a risk-neutral strategy. Following an optimistic strategy (say,
α = 0.75) instead may enhance exploration and improve long-term performance.

In addition here, at each Ti we greedily select the run with highest current
trace and duplicate it Q times while discarding the others. While this was found
to accelerate significantly the performance, keeping each run may prove a valid
alternative on problems that require more learning rate scheduling exploration.

The pseudo-code of the strategy is given in alg. 1. Note that a relevant choice
of d is problem-dependent: a large d allows more changes of the learning rate
value, but increases the computational overhead due to model fitting and solving
eq. (6). Besides, to facilitate inference the trace may not be sliced in too many
parts (fig. 2). In the experiment reported below, using d = 20 resulted with a
negligible BO overhead.

Choose Q, d, Td, set k = 0;
Take x10, . . . , x

Q
0 on a regular grid;

Run Q SGDs for T1 steps;
Gather Q traces, read Y i1 ’s, and build the model;
for k ← 1 to d− 1 do

Get i∗ = arg max1≤i≤Q Y
i
k ;

Duplicate i∗’s SGD run Q times;
∀1 ≤ i ≤ Q, find xik by solving eq. (6);
Pursue duplicated run for Tk+1 − Tk iterations and learning rates
x1k, . . . , x

Q
k , resp.;

Gather Q traces, collect Y ik ’s, and update model;
end
Find arg max1≤i≤Q Y

i
d , return corresponding parameters;

Algorithm 1: Single task tuning
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3.2 Experiment: Dynamic Tuning of Learnig Rate on CIFAR

We apply our approach to the training of a vanilla ResNet [14] neural network
with 56 layers on the classification dataset CIFAR-10 [20] that contains 60,000
32 × 32 colour images. We use an implementation of the ResNet model for
the CIFAR dataset available in Keras [7]. We first split the dataset into 50,000
training and 10,000 testing images. The Adam optimiser is used for 100 epochs
to maximise the log cross-entropy for future predictions.

-1

0

1

2

constant lr=2e-5
constant lr=8e-5
constant lr=3e-4

constant lr=1e-3
constant lr=5e-3
exp lr=1e-2 drop=0.5

exp lr=1e-2 drop=0.63
exp lr=1e-3 drop=0.63

0 5000 10000 15000 20000 25000 30000 35000
iterations

-5

-4

-3

-2
best learing rate failed runs

Fig. 3. Learning rates (bottom) and corresponding traces (top), following Algorithm 1.
Dashed lines highlight ‘failed’ runs according to our classifier. The baselines (constant
learning rates) are shown by dotted lines and the optimal learning rate schedule is given
in black.

Our BO setup is as follows: the 100 epochs are divided into d = 20 equal
intervals and Q = 5 optimisations are ran in parallel. The objective is recorded
every 50 iterations. The GP model for f uses a Matérn-5/2 kernel, a linear link
function and 100 inducing points. A practical issue we face is that increasing
abruptly the learning rate sometimes causes aberrant behaviour (which can be
seen by large peaks in the trace in fig. 3). To avoid this problem, we use a GP
classification model [15] to predict which runs are likely to fail based on {Y, x}
values. The optimisation of eq. (6) is then restricted to the values of x for which
the probability of failure is lower than αj . We set the threshold for failure for a
given trace inverse proportional to its quantile αj as we want traces with larger
αj be more explorative. In addition, we limit the maximum change to one order
of magnitude.
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As baselines, we use five constant learning rates schedules uniformly spread in
log space between 10−5 and 10−2, and 12 learning rates with exponential decay
(three initial values γ0 between 10−4 and 10−2 and four decay rates γ, 0.5, 0.63,
0.77 and 0.9), such that the learning rate in each epoch equals γ0 × γ−epoch/10.

Figure 3 shows the dynamic of our approach. The initial interval shows the
large performance differences when using different learning rates. Here, a very
large learning rate is best at first, but almost immediately becomes sub-optimal.
After a quarter of the optimisation budget, the optimal learning rates always
takes values around 10−4, slowly decreasing over time. The algorithm behaviour
captures this, by being very exploratory at first and much less towards the last
intervals.

Comparing to constant learning rate schedules, our approach largely out-
performs any of them. In the case where no parallel computation is performed,
our approach would still outperform any constant learning rate, as those seem
to have converged already to sub-optimal values after 40,000 iterations. Our
approach also outperforms all exponential decay schedules but one. For this
problem, a properly tuned exponential decay seems like a very efficient solution,
and our dynamic tuning captures this solution. Arguably, five runs with different
exponential decays might outperform our dynamic approach, but this would
critically depend on the chosen bounds for the parameters and luck in the design
of experiments. Standard BO (over the parameters) might be an alternative, but
five observations would be too small to run it.

4 Multi-Task Scheduling

4.1 Multi-Task Learning

We now consider the case where Ω is discrete and relatively small (say, |Ω| =
M ≤ 10), but can be increased when a new task needs to be solved, similarly to
[29]. The objective is then to find an optimal set of learning rates rather than
a single one. However, as an efficient learning rate schedule for a task is often
found to perform well for another, we assume that the values of the set share
some resemblance.

Several sampling strategies have been proposed recently in this context [37,
11, 29, 27]. However, all exploit the fact that posterior distributions are available
in closed form. As our model is sampling-based, using those approaches would
be either impractical, or overly expensive computationally. Hence, we propose a
new principled strategy, adapted from the TruVar algorithm of [6], originally
proposed for optimisation and level-set estimation.

We first extend our model to multiple tasks, by indexing the latent GP f on
ω on top of Y and x. Then, following [37], we assume a product kernel for f :

kf [(Y, x, ω), (Y ′, x′, ω′)] = kY (Y, Y ′)kx(x, x′)kΩ(ω, ω′).

To facilitate inference, we assume further that the tasks can be embedded in
a low-dimensional latent space, ω → w ∈ RL. This results in a set of L ×M
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parameters to infer (the locations of the tasks in the latent space), independently
of the number of runs.

4.2 Sequential Infill Strategy

In a nutshell, TruVar repeatedly applies two steps: 1) select a set of reference
points M ∈ X (e.g. for optimisation, potential maximisers), then 2) find the
observation that greedily shrinks the sum of prediction variances at reference
points.

We adapt here this strategy to uncover profile optima, that is:

X∗ = {xi∗ = arg max
x∈X

y(x, Td, ωi)}Mi=1.

The original algorithm selects as reference pointsM all the points for which an
upper confidence bound (UCB) of the objective is higher than a threshold. As we
work with continuous design spaces, we decided to simplify this step and consider
forM the maximisers X̂∗ = {x̂1∗, . . . , x̂M∗} of the UCB of the final trace value
for each task, that is:

x̂i∗ = arg max
x∈X

qα[y(x, Td, ωi)], 1 ≤ i ≤M, (7)

with α ∈ (0.5, 1) so that the quantile defines a UCB for y(x, t). Note that to
ensure theoretical guarantees, UCB strategies generally require quantile orders
that increase with time [17]. However, a constant value usually works best in
practice [36, 5], so we focus on this case here.

Due to the lack of data, the performance at X̂∗ is uncertain, which can be
quantified by the mean of variances at X̂∗:

J =
1

M

M∑
i=1

Var
[
y
(
x̂i∗, Td, ωi

)]
.

Note that as X̂∗ is chosen using a UCB, it is likely to correspond to values for
which the model has a high prediction variance. So, J may increase monotonically
with α, which acts as a tuning parameter for the exploration / exploitation
trade-off.

Now, we would like to find the run (learning rate and task) that reduces J
the most. Assume a potential candidate (x, ω), that would provide, if evaluated,
an additional set of observations yx,ω. Conditioning the model on this new data
would reduce the prediction uncertainty at X̂∗ (by law of total variance), which
we can measure with

J̄(x, ω) =
1

M

M∑
i=1

Var
[
y
(
x̂i∗, Td, ωi

)
|yx,ω

]
≤ J,

where Var(.|yx,ω) denotes the variance conditionally on yx,ω. In the case of regular
GP models, J̄ is actually available in closed form independently of the values of
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yx,ω [6]. This is not the case here, so we replace J̄(x, ω) by its expectation over
the values of yx,ω, which leads to the following sampling strategy:

{xnew, ωnew} = arg min
{x,ω}

Eyx,ω

(
J̄(x, ω)

)
. (8)

In practice, this criterion is not available in closed form, and must be computed
using a double Monte-Carlo loop. However, conditioning on yx,ω can be approx-
imated simply, as follow. First, samples of {f(Y new

0 , xnew
1 ), . . . , f(Y new

d−1 , x
new
d )}

are obtained recursively, as in section 2.3. Then, conditioning f on each of those
samples and computing the new conditional variance as in section 2.3 allows to
compute eq. (8).

Once xnew and ωnew are obtained, the corresponding experiment is run and
the model is updated, which in turn leads to a new set X̂∗, etc. Once the budget
is exhausted, the final set X̂∗ may be chosen using a different α (either 0.5 for
a risk-neutral solution or ≤ 0.5 for a risk-averse one). The pseudo-code of the
strategy is given in alg. 2.

Choose N0, N , d, Td, L, α;
Select initial set of experiments {x0, ω0}, . . . , {xN0

, ωN0
};

Run N0 SGDs for Td steps;
Gather N0 traces, build trace model;
for i← N0 + 1 to N do

Find the optimistic set X̂∗ by solving eq. (7);
Find the experiment {xnew, ωnew} that reduces the uncertainty related
to X̂∗ by solving eq. (8);
Run SGD with {xnew, ωnew};
Gather new trace, update trace model;

end
Return the set of optimal learning rates X̂∗;

Algorithm 2: Multi-task tuning
Following [42], we use the so-called reparametrisation trick when generating

samples in order to solve eq. (8) with respect to xnew using gradient-based
optimisation. Note that ωnew is found by exhaustive search.

4.3 Experiment: Multi-Task Setting with SVGP on MNIST

To illustrate our strategy, we consider the following setup. We use the MNIST
digit dataset, split into five binary classification problems (0 against 1, 2 against
3 and so on until 8 against 9). Our goal is to fit a sparse GP classification model
to each of these datasets, by maximising its ELBO using the Adam algorithm.

We choose here Td = 1, 000 Adam iterations, and d = 5 different learning
rate values. The learning rates are bounded by [10−5, 10−3]. N0 = 5 initial runs
are performed with learning rates chosen by Latin Hypercube sampling (in the
logarithmic space), and 15 runs are added sequentially according to our TruVar
strategy. The GP model for f uses a Matérn-5/2 kernel, an exponential link
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function, 50 inducing points and a dimension L = 2 for the latent space of tasks.
To ease the resolution of eq. (7), we follow a greedy approach by searching for
one learning rate value at a time, starting from x0, which is in line with the
Markov assumption of the model.

Figure 4 shows the learning rate profiles and corresponding runs obtained
after running the procedure, as well as some predictions for randomly chosen
learning rates. We first observe the flexibility of our model, which is able to
capture complex traces while providing relevant uncertainty estimates (top plots).
Then, for all tasks, the learning rates found reach the upper bound at first and
decreases when the trace reaches a plateau. The optimal way of decreasing the
learning rate depends on the task. One can see that the predictions are uncertain,
but only on one side (some samples largely overestimate the true trace but median
ones are quite close to the truth).
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0 500 1000
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Fig. 4. Actual traces (black), predictions (color) and learning rates (grey, in log-scale
between 10−5 and 10−3). The learning rates are randomly chosen for the top row, and
set to their optimal estimates on the bottom right.

Figure 5 shows the estimated proximity between tasks. Here, all the tasks
have been found relatively similar, as they all lead to close learning rate schedules.
One may notice for instance that mnist01 is at an edge of the domain, which can
be imputed to a different initial trace behaviour.

4.4 Extension: Warm-Starting SGD for a New Task

Now, assume that a new task ωnew is added to the current set Ω. Unfortunately,
our model cannot be used directly as the value of the corresponding latent
variables wnew is unknown. The first solution is to find a “universal” tuning:
this can be obtained by maximising the prediction of y(x, Td, ωnew) averaged
over all possible values for wnew. This average can be calculated by Monte-Carlo
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Fig. 5. Latent variable values for each dataset.

assuming a probability measure for wnew, for instance the Lebesgue measure over
the convex hull of w1, . . . , wM .

Alternatively, one might want to spend some computing budget (say, Ti,
i > 0) to learn wnew and achieve then a better learning rate tuning. Assuming
again a measure for wnew, an informative experiment would correspond to a
learning rate for which the proportion of the variance of the predictor due to
the uncertainty on wnew is maximal. Averaging over all time steps, we define our
sampling strategy (with again a criterion computable by Monte-Carlo) as:

x∗:i = arg max
x:i∈[0,1]i

Ti∑
t=0

Ew[Var(Y (x:i, t, w)|w)]

Var(Y (x:i, t, w)
,

with x:i = [x0, . . . , xi]. Note that once wnew is estimated, it is possible to apply
alg. 1, exploiting the flexibility of dynamic tuning while leveraging information
from previous runs. A more integrated approach would use directly alg. 1 while
measuring and accounting for uncertainty in wnew; this is left for future work.

5 Concluding Comments

We proposed a probabilistic model for the traces of optimisers, which input
parameters (the choice of learning rate values) correspond to particular periods
of the optimisation. This allowed us to define a versatile framework to tackle a
set of problems: tuning the optimiser for a set of similar tasks, warm-starting it
for a new task or on-line adaptation of the learning rate for a cold-started run.

Convergence proof for the multitask strategy has not been considered here.
We believe that the results of [6] may be adapted to our case: this is left for
future work. Other possible extensions are to apply our framework to other
optimisers: for instance, to control the population sizes of evolutionary strategy
algorithms such as CMAES [13], for which adaptation mechanisms have been
found promising [26]. Finally, additional efficiency could be achieved by leveraging
the use of varying dataset size, in the spirit of [18, 10] for instance.
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