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Abstract. In interactive multi-objective reinforcement learning (MORL),
an agent has to simultaneously learn about the environment and the pref-
erences of the user, in order to quickly zoom in on those decisions that
are likely to be preferred by the user. In this paper we study interactive
MORL in the context of multi-objective multi-armed bandits. Contrary
to earlier approaches to interactive MORL that force the utility of the
user to be expressed as a weighted sum of the values for each objective,
we do not make such stringent a priori assumptions. Specifically, we not
only allow non-linear preferences, but also obviate the need to specify the
exact model class in the utility function must fall. To achieve this, we
propose a new approach called Gaussian-process Utility Thompson Sam-
pling (GUTS). GUTS employs parameterless Bayesian learning to allow
any type of utility function, exploits monotonicity information, and lim-
its the number of queries posed to the user by ensuring that questions
are statistically significant. We show empirically that GUTS can learn
non-linear preferences, and that the regret and number of queries posed
to the user are highly sub-linear in the number of arm pulls.1

Keywords: Multiple Objectives · Multi-Armed Bandits · Thompson
Sampling · Reinforcement Learning

1 Introduction

Real-world decision problems often require learning about the effects of various
decisions by interacting with an environment. When these effects can be mea-
sured in terms of a single scalar objective, such problems can be modelled as a
multi-armed bandit (MAB) [2]. However, many real-world decision problems have
multiple possibly conflicting objectives [18]. may want to minimise response time,

1 A preliminary version of this work was presented at the ALA workshop in 2018 [20].
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while also minimising fuel cost and the stress levels of the drivers. For example,
an agent learning the best strategy to control epidemics may want to minimise
number of infections and minimise the burden on society [13]. When the user
is unable to accurately and a priori specify preferences with respect to such ob-
jectives for all hypothetically possible trade-offs, the user needs to be informed
about the values of actually available trade-offs between objectives in order to
make a well-informed decision. For such problems, MABs no longer suffice, and
need to be extended to multi-objective multi-armed bandits (MOMABs) [7, 3], in
which the effects of alternative decisions are measured as a vector containing a
value for each objective.

Most research on MOMABs [28, 3, 8] focusses on producing coverage sets [18],
i.e., sets of all possibly optimal alternatives given limited a priori information
about the possible utility functions of the user, as the solution to a MOMAB. A
minimal assumption is that utility functions are monotonically increasing in all
objectives. This leads to the popular Pareto front concept as the coverage set.

Typically, such research assumes an offline learning setting. I.e., there is a
learning phase in which there is no interaction with the user, after which the
coverage set is presented to the user in order to select one final alternative.
The rewards attained during learning are assumed to be unimportant; only the
expected rewards of the final alternative is assumed to be relevant to the utility of
the user. However, this is a limiting assumption. For example, the ambulances
discussed above may well be deployed while still learning about the expected
value of the deployment strategies in the different objectives. In such cases, we
need to use our interactions with the environment efficiently, as we care about
the rewards accrued during learning. When the learning agent can interact with
the user and elicit preferences from the user during learning [19], the agent can
focus its learning on strategies that the user finds most appealing quickly. This
is thus an online and interactive learning scenario.

Roijers et al. [19] recently proposed the interactive Thompson sampling (ITS)
algorithm for online interactive reinforcement learning in MOMABs, and show
that the number of interactions with the environment in an multi-objective in-
teractive online setting can be reduced to approximately the same amount of
interactions as in single-objective state-of-the-art algorithms such as Thompson
sampling. However, they make highly restrictive assumptions about the utility
functions of users. Specifically, they assume that user utility is a weighted sum
of the values in each objective.

In real-life multi-objective RL, it is essential to be able to deal with users
that have non-linear preferences. Therefore, we propose the Gaussian-process
Utility Thompson Sampling (GUTS) algorithm. GUTS can deal with non-linear
utility functions, enabling interactive reinforcement learning in MOMABs for
the full range of multi-objective RL settings. To do so, we make the following
key improvements over ITS. First, rather than using a pre-specified model-space
for utility functions, we employ parameterless Bayesian learning, i.e., Gaussian
processes (GPs) [6, 15, 5], to be able to learn arbitrary utility functions. GPs
are data-efficient, and can thus quickly learn the relevant part of the utility
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function. Secondly, because GPs cannot enforce monotonicity with respect to
each objective (i.e., the minimal assumption in multi-objective RL), as GPs
cannot incorporate monotonicity constraints, GUTS enforces this monotonicity
separately from the GP model of the utility by filtering provably dominated
actions. Finally, we propose statistical significance testing to only ask the user
about the preferences between statistically significantly different arms, to prevent
irrelevant questions in the earlier iterations, and show empirically that this does
not increase regret.

2 Background

In this section we define our problem setting, i.e., multi-objective multi-armed
bandits (MOMABs), and how we model user utility. First however, we define
the scalar version of a MOMAB, i.e, a MAB.

Definition 1. A scalar multi-armed bandit (MAB) [25] is a tuple 〈A,P〉 where

– A is a set of actions or arms, and
– P is a set of probability distributions Pa(r) : R → [0, 1] over scalar rewards
r associated with each arm a ∈ A.

We refer to the the mean reward of an arm as µa = EPa
[r] =

∫∞
−∞ rPa(r)dr, and

to the optimal reward as the mean reward of the best arm µ∗ = maxa µa.

The goal of an agent interacting with a MAB is to minimise the expected regret.

Definition 2. The expected cumulative regret of pulling a sequence of arms for
each timestep between t = 1 and a time horizon T (following the definition of
Agrawal et al. [1], is

E

[
T∑
t=1

µ∗ − µa(t)

]
,

where a(t) is the arm pulled at time t.

In scalar MABs, agents aim to find the arm a that maximises the expected
scalar reward. In contrast, in multi-objective problems there are n objectives that
are all desirable. Hence, the stochastic rewards r(t) and the expected rewards
for each alternative µa are vector-valued.

Definition 3. A multi-objective multi-armed bandit (MOMAB) [3, 28] is a tu-
ple 〈A,P〉 where

– A is a finite set of actions or arms, and
– P is a set of probability distributions, Pa(r) : Rd → [0, 1] over vector-valued

rewards r of length d, associated with each arm a ∈ A.

Rather than having a single optimal alternative as in a MAB, MOMABs can
have multiple arms whose value vectors are optimal for different preferences
that users may have. Following the utility-based approach to MORL [18], we
assume such preferences can be expressed using a utility function, u(µ) that
returns the scalarised value of µ. Using this utility function, the online regret
for the interactive multi-objective reinforcement learning setting is as follows.



4 D.M. Roijers, L.M. Zintgraf, P. Libin, M. Reymond, E. Bargiacchi, A. Nowé

Definition 4. The expected cumulative user regret of pulling a sequence of arms
for each timestep between t = 1 and a time horizon T in a MOMAB is

E

[
T∑
t=1

u(µ∗)− u(µa(t))

]
,

where a(t) is the arm pulled at time t, µ∗ = arg maxa u(µa), and na(T ) is the
number of times arm a is pulled until timestep T .

For the aforementioned ITS algorithm, Roijers et al. [19] require that u(µ) is of
the form w · µ, where w is a vector of positive weights per objective that sum
to one. However, in many cases, users cannot be assumed to have such simple
linear preferences. Instead, users often exhibit some degree of non-linearity. To
accommodate any user, we want to only make the minimal assumption, i.e., that
u(µ) is monotonically increasing in all objectives. This assumption implies that
more is better in each objective, which follows from the definition of an objective.

2.1 Modelling User Preference using Gaussian Processes

Because the user’s utility u(µ) can be of any form, we use a general-purpose
Gaussian process (GP) [15] due to its flexibility for a wide range of tasks. GPs
capture uncertainty by assigning to each point a normal distribution – the mean
reflecting the expected value, and the variance reflecting the uncertainty at that
point. GPs are specified by a mean function m and a kernel k,

u(µ) ∼ GP (m(µ), k(µ,µ′)) , (1)

where the kernel defines how data points influence each other. Since we do not
have any prior information on the shape of the utility function of the user, we use
the common zero-mean prior, m(µ) = 0. We assume the user’s utility function
to be smooth (i.e., it does not make sudden large jumps if the reward vector
µ changes only slightly), and therefore use the squared exponential kernel [15],
k(x, x′) = exp

(
−(2φ)−1||x− x′||2

)
, which is appropriate for modelling smooth

functions, with φ controlling the distance over which neighbouring points influ-
ence each other. For large φ, the expected values of the data points are going to
be highly correlated, while for small φ the GP can have larger fluctuations.

Given observation data C about the user’s preferences, we update our prior
belief P (u) about the utility function u(µ) using Bayes’ rule P (u|C) ∝ P (u)P (C|u),
where P (C|u) is the likelihood of the data given u(µ). The posterior P (u|C) is
the updated belief about the user’s utility, and the current approximation of the
utility function.

In this paper, the data for the GP, C, is given in terms of pairwise comparisons
between vectors,

C = {µm � µ′m}Mm=1 , (2)

where � denotes a noisy comparison u(µm)+ε > u(µ′m)+ε′, where ε ∼ N (0, σ2)
accounts for noise in the user’s utility (i.e., the user is allowed to make small
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errors). We opt for binary comparison because it is highly difficult—and thus
error-prone—for humans to provide numerical utility evaluations of single items;
it is known that such evaluations can differ based on a number of external factors
that are not relevant to the data, making the valuations time-dependent, while
pairwise comparisons (i.e., asking the question “Which of these two vectors do
you prefer?”) are more stable [9, 21, 22, 24].

To update the GP using this data, we need to define a likelihood function.
Chu et al. [6] introduce a probit likelihood for pairwise comparison data with
Gaussian noise, which can be used to update the GP. Given this likelihood, the
posterior becomes analytically intractable and has to be approximate (e.g., using
Laplace approximation as in [5]).

The main advantages of GPs for our setting are that they do not assume a
model-class of functions for u(µ), and that they are sample-efficient.

Note that strictly enforcing monotonicity constraints on Gaussian processes
is not possible. Some approximate solutions exist [16, 11, 26], however, none of
these directly apply to the probit likelihood [6] function we use. In this paper, we
instead use the prior knowledge that Pareto-dominated arms cannot be optimal
and enforce the monotonicity constraint by using a pruning strategy (introduced
in more detail in the next section).

3 Gaussian-process Utility Thompson Sampling

In this section, we propose our main contribution: Gaussian-process Utility Thomp-
son Sampling (GUTS) (Algorithm 1). GUTS interacts with the environment by
pulling arms, and storing the resulting reward-vectors together with the associ-
ated arm numbers in a dataset D. GUTS also interacts with the user by posing
comparison queries to the user, leading to a dataset C (as in Equation 2).

GUTS selects the arms to pull by sampling the posterior mean reward dis-
tributions as in Thompson Sampling (TS) [25] for single-objective MABs. In
contrast to single-objective MABs, the means sampled from the posteriors in
MOMABs are vector-valued (line 5). As there is typically not one arm that has
the optimal reward for all objectives, minimising the regret (Definition 4) is only
possible by also estimating the utility function, u(µ). To model this utility func-
tion, GUTS employs a Gaussian Process (GP) (Equation 1), which is a posterior
distribution over utility functions, given data. Because the GP is a posterior over
utility functions, GUTS can sample u(µ) from this posterior. We assume that
the user’s utility function does not depend on the values of the arms, and can
thus be learnt and sampled independently (lines 7–8). When such a sampled
u(µ) is applied to the reward vectors, the action that maximises the utility ac-
cording to u(µ) can be found (lines 9–10) and executed (line 18). Aside from
needing to sample a utility function from the GP to find the utility-maximising
arm, learning the optimal arm to pull given the GP is thus highly similar to TS.
The main difficulty is in learning to estimate u(µ) accurately and efficiently.

To learn u(µa), we need data about the preferences of the user. As mentioned
in Section 2 we gather data about the preferences of users in terms of binary
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Algorithm 1: GP Utility Thompson Sampling

Input: Parameter priors on reward distributions, and GP prior
parameters m(µ) and k(µ,µ′), countdown, α

1 C ← ∅ ; // previous comparisons
2 D ← ∅ ; // observed reward data
3 cd← countdown

4 for t = 1, ..., T do
5 θD,← draw set of samples from P (θ|D)
6 θ′D ← PPrune(θD)
7 u1 ← sample utility function from GP posterior given C
8 u2 ← sample utility function from GP posterior given C
9 a1(t)← arg max

a
u1(µθ′D,a)

10 a2(t)← arg max
a

u2(µθ′D,a)

11 significant ← HotellingT2(D[a1(t)], D[a2(t)]) ≤ α
12 if a1(t) 6= a2(t) ∧ cd ≤ 0 ∧ significant then
13 Perform user comparison for µθ′D,a1(t) and µθ′D,a2(t) and add

result (in the format, µx � µy) to C

14 cd← countdown

15 else
16 cd- -
17 end
18 r(t)← play a1(t) and observe reward
19 append (r(t), a1(t)) to D

20 end

comparisons between two value-vectors (Equation 2). In addition to a dataset
about the value-vectors associated with the arms, D, (line 2), GUTS thus keeps
a dataset of outcomes of pairwise preference queries, C, (line 1). To fill C with
meaningful and relevant data, GUTS needs to pose queries to a (human) decision
maker. Because a comparison consists of two arms, GUTS draws one sample set
of mean reward vectors from the posteriors of the mean reward vectors given
D, θD (line 5), and subsequently samples two sample utility functions from
the posterior over utility functions given C (lines 7–8). When these two sets
of samples, paired with their respective sampled utility function, disagree on
what the optimal arm should be, a preference comparison between the sampled
mean vectors of these arms are a candidate query to the user. Please note that
this sampling is different from ITS [19], where the mean reward vectors are
sampled twice as well; we argue that this is not necessary as the utility function
is independent from the reward vectors, and we are only interested in possible
differences between sampled utilities for a single given set of mean reward vectors.

GUTS uses a GP to estimate u(µ) from the data in C. GPs are highly
general, data-efficient, and as non-parametric function approximators can fit
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any function. However, in multi-objective decision-making we have one more
piece of information that we can exploit. We know that u(µ) is monotonically
increasing in all objectives; i.e., increasing the value of a mean reward vector µ
in one objective, without diminishing it in the other objectives can only have
a positive effect on utility. This corresponds to the minimal assumption about
utility in multi-objective decision making [18], and leads the notion of Pareto
domination. An arm a is Pareto-dominated, µa′ �P µa, when there is another
arm a′ with an equal or higher mean in all objectives, and a higher mean in at
least one objective:

µa′ �P µa
def
= (∀i) µa′,i ≥ µa,i ∧ (∃j) µa′,j > µa,j .

Because of monotonicity, Pareto-dominated arms cannot be optimal [18]. GUTS
enforces this condition as follows: Pareto-dominated arms are excluded from
the sets of sampled mean reward vectors, by using a pruning operator PPrune2

resulting in a smaller sets of arms θ′D (line 6). This ensures that the user will not
be queried w.r.t. her preferences for dominating-dominated pairs of vectors from
θ′D, as we already know the answer without posing the question to the user.

Using C we sample utility functions and maximise over the available actions
in θ′D (line 7–10). We note that because we estimate u using GPs, GUTS can
directly sample values for the values in θ′D without fully specifying the entire
function u(µ) for all possible µ in Rn.

Because interactions with a decision maker are an expensive resource, we
need to select preference queries between value vectors carefully. Therefore, a)
these queries should be relevant with respect to finding the optimal arm (pref-
erences between arms that are both suboptimal are less relevant), b) the arms
in the queries should be statistically significantly different from each other, and
c) queries should be progressively infrequent, as we assume that the user is
decreasingly motivated to provide more information to the system as time pro-
gresses. To make sure that only relevant questions are asked (a), GUTS only
poses queries to the user when the two sampled and utility functions disagree on
the arm that maximises the utility for the user. As more information comes in,
we expect the two sampled utility functions to disagree on which arm is optimal
less (c). Additionally, we also want to assure that queries only concern arms
for which the difference between values is statistically significant (b). For this,
when we are dealing with multi-variate Gaussian-distributed rewards, we can
use Hotellings–T 2 test [10], which is the multi-variate version of the Students-T
test. The input for this test is all the data with respect to both arms we want
to compare, i.e., a1(t) and a2(t), in the data gathered so far (D). The threshold
p-value with respect to when we say the difference is not insignificant, α, can be
set to a low value. In the experiments we used α = 0.01.

Finally, one might argue that a human decision maker would not always
be able to answer all the queries the algorithm might require. For example, the
algorithm might simply generate too many questions for the user to answer while

2 See e.g. [17] for a reference implementation of PPrune.
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it continues to learn about the environment, and when the user has answered
a question, the subsequent questions might already be deprecated. To simulate
this effect we introduce a simple cool-down of the number of arm-pulls that will
be taken before a user is again able to answer another query (line 14 and 16).
We hypothesise that while more queries are desirable, GUTS will still be able to
achieve sub-linear regret. In the most positive scenario, a higher cool-down could
even lead to the algorithm being able to ask more informative queries because
it learned more about the environment before it asks the queries.

4 Experiments

To test the performance of GUTS in terms of user regret (Definition 4) and the
number of queries posed to the user, and to test the effects of different parameter
settings, we perform experiments on two types of problems. In Section 4.1, we
use a 5-arm MOMAB that requires learning non-linear preferences to show that
GUTS is indeed able to handle such non-linear preferences. In Section 4.2 we
use a 5-arm real-world inspired benchmark with Poisson-distributed rewards to
show that GUTS can handle different reward distributions as well as utility
functions. In Section 4.3, random MOMAB instances are used to perform more
extensive experiments. The code for all experiments can be found at https:

//github.com/Svalorzen/morl_guts.

We compare GUTS to single-objective Thompson sampling provided with
the ground truth utility functions of the user. We refer to this baseline as cheat-
TS. While this is an unfair comparison (putting GUTS at a disadvantage), as
our setting does not actually allow algorithms to know the ground truth utility
function, it does provide insight into how much utility is lost due to having to
estimate the utility function via pairwise comparison queries. Furthermore, in
Section 4.1 we compare GUTS to ITS [19].

We note that cheat-TS does not have the same regret guarantees as Thomp-
son Sampling for e.g., single-objective Gaussian-distributed rewards. This is be-
cause the ground-truth utility function is non-linear. So even though the reward
vectors may be distributed as multi-variate Gaussian, and therefore the poste-
riors over mean reward vectors are also multi-variate Gaussians, the posterior
distribution over utilities that result from these means is not Gaussian. As the
theoretical regret bounds for Thompson sampling rely on the underlying reward
distributions of the arms, cheat-TS does not inherit these regret bounds.

In Sections 4.1 and 4.3 the MOMABs have multi-variate Gaussian reward dis-
tributions, as common in many real-world environments. This stands in contrast
to earlier work, i.e., [19], that uses independent Bernoulli-distributions for each
objective. For multi-variate Gaussian distributions, given the rewards r1, . . . rn,
the posterior distribution is also a multi-variate Gaussian [4]:

µ ∼ N (
µ0κ0 + nr̄

n+ κ0
, (Λ(n+ κ0))−1),
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Fig. 2: 5-arm MOMAB results for ITS, ground-truth (cheat) TS, and GUTS with dif-
ferent count-down settings and significance testing enabled (top), and with count-down
0 comparing the GUTS sampling strategy versus that of ITS, i.e., sampling two sets
of means (s2s) (bottom): regret (left) and the corresponding number of queries posed
(right), as a function of arm-pulls. The error regions indicate ±1σ.

where Λ is Wishart-distributed:

Λ ∼ Wi(n0 +
n

2
, Λ0 +

1

2
[Σ̄ +

κ0
κ0 + n

(r̄ − µ0)(r̄ − µ0)T ])

In Section 4.2, we use a real-world inspired MOMAB that has independent Pois-
son distributions for each objective, to test whether GUTS performs well for
differently distributed reward vectors.

For the GPs we use the common zero-mean prior, m(µ) = 0, and squared
exponential kernel [15]. When significance testing is used, we use α = 0.01 as
the significance threshold.

4.1 A 5-arm MOMAB

Fig. 1: A 5-arm MOMAB

In this subsection, we employ a 5-arm MOMAB (de-
picted in Figure 1), with the following ground truth
mean vectors: (0, 0.8), (0.1, 0.9), (0.4, 0.4), (0.8, 0.0),
and (0.9, 0.1). Note that (0, 0.8) and (0.8, 0.0) are
Pareto-dominated. We employ a (monotonically in-
creasing) utility function:

u5(µ) = 6.25 max (µ0, 0) max (µ1, 0),
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leading to the arm with mean vector (0.4, 0.4) be-
ing optimal with utility 1. Each reward distribution
is a multi-variate Gaussian with correlations 0 and in-
objective variance 0.005.

To find the optimal arm, a MOMAB-learning algorithm must be able to
handle the non-linearity of u5(µ). In order to test whether GUTS can indeed
handle this, we run GUTS on the MOMAB of Figure 1, and compare it to ITS
[19], and Thompson Sampling provided with the ground truth utility function in
Figure 2 (top). The results confirm that GUTS can handle non-linear preferences
and has a highly sub-linear regret curve. In contrast, ITS is limited to the space
of linear utility functions and does not manage to attain sub-linear regret.

As previously stated, a user may not have time (or is not willing) to answer
all questions posed by GUTS, as the user will need time to answer the queries,
and may be preoccupied with other tasks as well. Therefore, we introduced the
count-down parameter in the GUTS algorithm to simulate the user answering
a smaller portion of the questions. We compare different settings for the count-
down parameter (Figure 2, top) we observe that, as expected, no count-down
(i.e., cd = 0), performs best in terms of regret, the regret closely approximates
the regret of Thompson sampling supplied with the ground truth (Figure 2, top
left). The number of queries to the user can be reduced by increasing count-
down (Figure 2, top right). For example, at count-down 3, the user answers to a
query once in at most 4 arm-pulls. We observe that while this comes at the cost
of some regret, the learning curves remain highly sub-linear, and GUTS is still
able to learn the right preferences, albeit more slowly.

We further test the difference in sampling strategy between ITS and GUTS.
Specifically, we test how GUTS performance is affected if it does not sample the
mean rewards once, but twice, as in ITS. The results in Figure 2 bottom-left,
indicate that the regret is not affected by this difference. This is as expected, as
the shape of the utility function (the user) and the values of the mean rewards
(the environment) are independent. However, Figure 2 bottom-right shows that
the number of queries is significantly improved by using our sampling strategy.
We therefore conclude that our sampling strategy is superior to that of ITS.

We tested the effect of (disabling) significance testing. We found no significant
effect on regret in this simple problem, and a small effect on the number of queries
in favour of the doing significance testing. We did observe a slight increase in the
number of queries when significance testing was disabled. We show the effect on
more complex MOMABs in the next subsection.

In summary, we conclude that GUTS can effectively approximate the utility
function for the purpose of selecting the optimal arm in this problem. Further-
more, we conclude that sampling the means of the rewards for each arm once
(the GUTS sampling strategy) is better than sampling them twice (as in ITS).

4.2 Organic MOMAB

To test GUTS on different reward distributions and utility functions, we adapt a
real-world inspired benchmark environment [12]. This environment is motivated
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Fig. 3: Regret (left) and number of queries posed (right), as a function of arm-pulls,
averaged over 30 trials of the MOMAB of Fig. 1, with count-downs 0, 1, 2, 3.

by a research question that stems from organic agriculture, i.e., to investigate
strategies that maximize the prevalence of certain insect species on farmland to
predate on a pest insect species [23]. Maximising the occurrence of predatory
insect species will reduce pest species and will benefit crop yield, without using
artificial pesticides. This prevalence distribution follows a Poisson distribution
[23].We consider the case where there are two species of insects that need to
be controlled, and therefore we aim to maximize the prevalence of two species
that predate on the insect species that is to be controlled. As such, the utility
function is defined as:

umin(µ) = min(µ0, µ1)

The benchmark environment consists of a 5-arm MOMAB, with the same mean
vectors as our first experiment (Section 4.1). Each reward distribution consists of
independent Poisson distributions per objective. For a Poisson distribution, the
conjugate Jeffreys prior is a gamma distribution [14], Gamma(α0 = 0.5, β0 = 0).
Given rewards r = 〈r1, ..., rn〉, this leads to posterior

µ ∼ Gamma(α0 +

n∑
i=1

ri, β0 + n).

As β0 = 0, this posterior needs to be initialized one time for it be proper.
For this experiment, not only does GUTS need to cope with the nonlinearity

of umin(µ), it also needs to learn on a more complicated problem due to each
reward following a Poison distribution (where the variance equals the mean).
Despite that, the results on Figure 3 show that GUTS has a sub-linear regret
curve, regardless of the cooldown used. Moreover, the number of queries required
is lower than ITS, even without any cooldown.

We thus conclude that GUTS can cope with different reward distributions,
as we experimented with both Gaussian and Poisson distributions.

4.3 Random MOMABs

Random MOMABs are generated using the number of objectives d, and the
number of arms, |A|, as parameters, following the procedure of [19]: |A| samples
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Fig. 4: Regret (left) and number of queries posed to the user (right), as a function
of arm-pulls, averaged over 30 random, 2-objective, 20-arm MOMAB instances with
random utility functions or order 3, with noise ε = 0.1 on the comparisons of the user
(about 2% of the optimal utility), for GUTS with different count-downs.

µ′a are drawn from a d-dimensional Gaussian distribution N (µ′a|µrand, Σrand),
where µrand = 1 (vector of ones), and Σrand is a diagonal matrix with σ2

rand =
( 1
2 )2 for each element on the diagonal; this set is normalised such that all µa

fall into the d-dimensional unit hypercube, [0, 1]d. Each arm has an associated
multi-variate Gaussian reward distribution, with the aforementioned true mean
vectors, µa, and randomly drawn covariance matrices with covariances ranging
from perfectly negatively correlated to perfectly positively correlated, with an
average variance magnitude of σ2

P,a = 0.05 unless otherwise specified.

To test whether GUTS can learn to identify the optimal arm, under different
settings of the count-down parameter (i.e., when a user cannot answer all the
questions otherwise generated by the algorithm), we run GUTS on random 20-
arm MOMABs with randomly generated polynomial utility functions of order
3. In Figure 4, we observe that the regret curves of GUTS (on the left) are all
sub-linear, and only a small amount worse than Thompson Sampling provided
with the ground-truth utility function (cheat-TS); at 1500 arm-pulls, GUTS with
count-down 0 has only 5.8% more cumulative regret than cheat-TS. Furthermore,
we observe that the number of questions for count-down behaves as we expect:
first queries are not yet significant; then the queries become significant leading
to a higher number of queries; but the number of queries quickly goes down as
the approximation of u(µ) becomes better. We thus conclude that GUTS can
adequately approximate the utility function in order to identify the optimal arm.

For count-down 5, GUTS has 18.6% more regret than cheat-TS at 500 arm
pulls, for count-down 10, 25.3% and, for count-down 20, 38.8%. However, count-
down 5 requires only 78.9% of the queries with respect to count-down 0, and
count-downs 10 and 20 only 64.1% resp. 45.4%. I.e., the increase in regret is
less steep than the reduction in the number of queries. We hypothesise that this
is because GUTS continues learning about the arms before the next question
is asked, yielding more information per query. We thus conclude that GUTS
remains an effective algorithm when the user cannot answer a query every arm-
pull.
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Fig. 5: Regret (left) and number of queries posed (right) as a function of arm-pulls,
averaged over 30 random, 20-arm MOMAB instances with 2 (top), 4 (middle) and 6
(bottom) objectives, with random utility functions or order 3, with noise ε = 0.1 on
the comparisons of the user (∼ 2% of the optimal utility), for GUTS with count-down
10, and with or without significance testing (s1/s0).

To test whether GUTS can learn effectively in random MOMABs with an
increasing number of objectives, and the effect of (disabling) significance test-
ing, we run GUTS with cooldown 10 on 2-, 4-, and 6-objective 20-arm random
MOMABs with randomly generated polynomial utility functions of order 3 (Fig-
ure 5). As can be seen, the curves remain sub-linear, but less so for more ob-
jectives, and the difference in regret with cheat-TS increases. This is because
GUTS suffers from the curse of dimensionality, as it has to estimate higher-
dimension utility functions, while cheat-TS does not (it is provided with the
ground-truth utility function, so it only has to optimise a scalar utility). This
was to be expected; cheat-TS has an unfair advantage, and is only included as a
theoretical reference. We observe that for 6 objectives, there is a lot of variance
in the performance of cheat-TS. This is due to several runs where the utility
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Fig. 6: (left) Regret as a function of arm-pulls, (right) number of queries posed to the
user as a function of arm-pulls, averaged over 30 random, 2-objective, 20-arm MOMABs
with random utility functions or order 3, with noise ε = 0.1, 0.5 and 1.0 (resp. 2%,
10%, 20% of the optimal utility) on the comparisons, for GUTS with count-down 5.

function is steeper (has a higher gradient) at the mean of a suboptimal arm
than that of the optimal arm, so that smaller sampling differences in the mean
reward vector get amplified by the utility function. This is a clear example of the
theoretical regret bounds for TS for Gaussian reward distributions not apply-
ing to cheat-TS. In other words, the MOMAB with non-linear utility function
over multi-variate Gaussian reward distributions can be a considerably harder
problem than a single-objective MAB with Gaussian reward distributions.

Finally, to check how GUTS handles different levels of noise in the compar-
isons of the user, we run GUTS on 20, 2-objective, 20-arm, random MOMAB
instances with randomly generated polynomial utility functions of order 3 (Fig-
ure 6). These randomly generated utility functions have utilities ranging from
about 1 for the worst arm to 5 for the best arm. We use 2%, 10%, 20% of this
utility as noise, i.e., ε = 0.1, 0.5 and 1.0. For ε = 0.1 and 0.5, we observe very
similar regret curves, and no significant difference in the number of queries. For
ε = 1.0 we observe the regret and number of query curves suddenly going up;
this is because in many of the runs GUTS suddenly samples a non-optimal arm
more often after a series of erroneous comparisons. In one of these runs we ob-
serve that GUTS does converge back to the optimal arm after a while before
the run ends. We thus conclude that GUTS is robust against reasonable levels
of noise, but becomes unstable when the noise in the comparisons is too large.

5 Related work

Several papers exist that study offline multi-objective reinforcement learning
in MOMABs [28, 3, 8]. These papers focus on producing a coverage set in a
separate learning phase, without user interaction. After this learning phase, the
interaction with the user needs to be done in a separate selection phase. In
contrast, we study an online interactive setting, and aim to minimise online
regret by estimating the user’s utility function during learning.
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Relative bandits [30, 27] are a related setting to online interactive learning for
MOMABs. Similar to interactive online MORL for MOMABs, relative bandits
assume a hidden utility function which can be queried with pairwise comparisons.
Contrary our setting, these rewards (i.e., reward vectors) cannot be observed, and
the comparisons are made regarding single arm pulls, rather than the aggregate
information over all pulls of a given arm as in GUTS (and ITS).

6 Discussion

In this paper we proposed Gaussian-process Utility Thompson Sampling (GUTS)
for interactive online multi-objective reinforcement learning in MOMABs. Con-
trary to earlier methods, GUTS can handle non-linear utility functions, which
is an essential feature for MORL algorithms. We have shown empirically that
GUTS can effectively approximate non-linear utility functions for the purpose
of selecting the optimal arm, leading to only little extra regret if a query can be
posed to the user at every arm pull w.r.t. Thompson Sampling when provided
a priori with the ground-truth utility function. We show the effects of limit-
ing the number of user queries. In this case—even if the number of queries is
strongly reduced—the regret remains sub-linear, albeit higher than when queries
can be posed at every time-step. Therefore, we conclude that GUTS is robust
against less questions being answered than generated. Furthermore, our experi-
ments indicate that GUTS is robust against reasonable levels of noise in the user
comparisons.

We note that all conclusions in this paper are based on empirical evaluations
rather than theoretical bounds. This is due to the usage of Gaussian Processes
(GPs) which makes a theoretical analysis hard. However, we believe it essential
to use GPs, because GPs can fit any utility function without assuming a model-
space. A limitation of our regret metric is that it assumes the utility is derived
from the expected values (µ) at each timestep. We intend to provide new regret
metrics in future work. We also aim to test GUTS on real-world problems, and
integrate the algorithm with an effective query-answering interface for decision
makers. Furthermore, we aim to investigate the potential of asking more complex
queries than just pairwise comparisons, such as ranking and clustering [29].
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anytime m-top exploration. In: ICTAI. pp. 1422–1428 (2019)
13. Libin, P.J., Verstraeten, T., Roijers, D.M., Grujic, J., Theys, K., Lemey, P., Nowé,
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