Skip to main content

Deep Gaussian Processes Using Expectation Propagation and Monte Carlo Methods

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Abstract

Deep Gaussian processes (DGPs) are the natural extension of Gaussian processes (GPs) to a multi-layer architecture. DGPs are powerful probabilistic models that have shown better results than standard GPs in terms of generalization performance and prediction uncertainty estimation. Nevertheless, exact inference in DGPs is intractable, making these models hard to train. For this task, current approaches in the literature use approximate inference techniques such as variational inference or approximate expectation propagation. In this work, we present a new method for inference in DGPs using an approximate inference technique based on Monte Carlo methods and the expectation propagation algorithm. Our experiments show that our method scales well to large datasets and that its performance is comparable or better than other state of the art methods. Furthermore, our training method leads to interesting properties in the predictive distribution of the DGP. More precisely, it is able to capture output noise that is dependent on the input and it can generate multimodal predictive distributions. These two properties, which are not shared by other state-of-the-art approximate inference methods for DGPs, are analyzed in detail in our experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://github.com/Gonzalo933/dgp-aepmcm.

References

  1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015)

    Google Scholar 

  2. Bui, T.D., Hernández-Lobato, J.M., Hernández-Lobato, D., Li, Y., Turner, R.E.: Deep Gaussian processes for regression using approximate expectation propagation. In: International Conference on International Conference on Machine Learning, pp. 1472–1481 (2016)

    Google Scholar 

  3. Calandra, R., Peters, J., Rasmussen, C.E., Deisenroth, M.P.: Manifold Gaussian processes for regression. In: International Joint Conference on Neural Networks, pp. 3338–3345 (2016)

    Google Scholar 

  4. Cutajar, K., Bonilla, E.V., Michiardi, P., Filippone, M.: Random feature expansions for deep Gaussian processes. In: International Conference on Machine Learning, pp. 884–893 (2017)

    Google Scholar 

  5. Damianou, A., Lawrence, N.: Deep Gaussian processes. In: International Conference on Artificial Intelligence and Statistics, pp. 207–215 (2013)

    Google Scholar 

  6. Depeweg, S., Hernández-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Learning and policy search in stochastic dynamical systems with Bayesian neural networks. CoRR abs/1605.07127 (2016)

    Google Scholar 

  7. Dua, D., Graff, C.: UCI repository (2017). http://archive.ics.uci.edu/ml

  8. Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., Zoubin, G.: Structure discovery in nonparametric regression through compositional kernel search. In: Proceedings of the 30th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 28, pp. 1166–1174. PMLR (17–19 June 2013)

    Google Scholar 

  9. Havasi, M., Hernández-Lobato, J.M., Murillo-Fuentes, J.J.: Deep Gaussian processes with decoupled inducing inputs. In: arXiv:1801.02939 [stat.ML] (2018)

  10. Havasi, M., Hernández-Lobato, J.M., Murillo-Fuentes, J.J.: Inference in deep Gaussian processes using stochastic gradient Hamiltonian Monte Carlo. In: Advances in Neural Information Processing Systems, pp. 7517–7527 (2018)

    Google Scholar 

  11. Hensman, J., Fusi, N., Lawrence, N.D.: Gaussian processes for big data. In: Uncertainty in Artificial Intellegence, pp. 282–290 (2013)

    Google Scholar 

  12. Heskes, T., Zoeter, O.: Expectation propagation for approximate inference in dynamic Bayesian networks. In: Uncertainty in Artificial Intelligence, pp. 216–223 (2002)

    Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–15 (2015)

    Google Scholar 

  15. Ko, J., Fox, D.: GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models. Auton. Robots 27, 75–90 (2009)

    Article  Google Scholar 

  16. Li, Y., Hernandez-Lobato, J.M., Turner, R.E.: Stochastic expectation propagation. In: Neural Information Processing Systems, pp. 2323–2331 (2015)

    Google Scholar 

  17. Pope, C.A., Gosling, J.P., Barber, S., Johnson, J., Yamaguchi, T., Feingold, G., Blackwell, P.: Modelling spatial heterogeneity and discontinuities using voronoi tessellations. ArXiv e-prints (2018)

    Google Scholar 

  18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  19. Salimbeni, H., Deisenroth, M.: Doubly stochastic variational inference for deep Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 4588–4599 (2017)

    Google Scholar 

  20. Salimbeni, H., Dutordoir, V., Hensman, J., Deisenroth, M.: Deep Gaussian processes with importance-weighted variational inference. In: International Conference on Machine Learning, pp. 5589–5598 (2019)

    Google Scholar 

  21. Seeger, M.: Expectation propagation for exponential families. Technical report (2005)

    Google Scholar 

  22. Snelson, E., Ghahramani,: Sparse Gaussian processes using pseudo-inputs. In: Advances in Neural Information Processing Systems, pp. 1257–1264 (2006)

    Google Scholar 

  23. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  24. Titsias, M.: Variational learning of inducing variables in sparse Gaussian processes. In: International Conference on Artificial Intelligence and Statistics, pp. 567–574 (2009)

    Google Scholar 

  25. Vafa, K.: Training and inference for deep Gaussian processes. Technical report (last year project), Harvard College (2016)

    Google Scholar 

  26. Wilson, A.G., Adams, R.P.: Gaussian process kernels for pattern discovery and extrapolation. In: International Conference on International Conference on Machine Learning, pp. 1067–1075 (2013)

    Google Scholar 

  27. Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In: International Conference on Artificial Intelligence and Statistics, pp. 370–378 (2016)

    Google Scholar 

  28. Yu, H., Chen, Y., Low, B.K.H., Jaillet, P., Dai, Z.: Implicit posterior variational inference for deep Gaussian processes. Adv. Neural Inf. Process. Syst. 32, 14502–14513 (2019)

    Google Scholar 

Download references

Acknowledgment

We acknowledge using the facilities of Centro de Computación Científica at UAM and support from the Spanish Plan Nacional I+D+i (grants TIN2016-76406-P, TEC2016-81900-REDT and PID2019-106827GB-I00) and from Comunidad de Madrid (grants PEJD-2016-TIC-238 and PEJD-2017-PRE-TIC-3776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hernández-Lobato .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 318 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernández-Muñoz, G., Villacampa-Calvo, C., Hernández-Lobato, D. (2021). Deep Gaussian Processes Using Expectation Propagation and Monte Carlo Methods. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12459. Springer, Cham. https://doi.org/10.1007/978-3-030-67664-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67664-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67663-6

  • Online ISBN: 978-3-030-67664-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics