Skip to main content

FlowFrontNet: Improving Carbon Composite Manufacturing with CNNs

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track (ECML PKDD 2020)

Abstract

Carbon fiber reinforced polymers (CFRP) are light yet strong composite materials designed to reduce the weight of aerospace or automotive components – contributing to reduced emissions. Resin transfer molding (RTM) is a manufacturing process for CFRP that can be scaled up to industrial-sized production. It is prone to errors such as voids or dry spots, resulting in high rejection rates and costs. At runtime, only limited in-process information can be made available for diagnostic insight via a grid of pressure sensors. We propose FlowFrontNet, a deep learning approach to enhance the in-situ process perspective by learning a mapping from sensors to flow front “images” (using upscaling layers), to capture spatial irregularities in the flow front to predict dry spots (using convolutional layers). On simulated data of 6 million single time steps resulting from 36k injection processes, we achieve a time step accuracy of 91.7% when using a \(38 \times 30\) sensor grid 1 cm sensor distance in x- and y-direction. On a sensor grid of \(10 \times 8\), with a sensor distance of 4 cm, we achieve 83.7% accuracy. In both settings, FlowFrontNet provides a significant advantage over direct end-to-end learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.esi-group.com/software-solutions/virtual-manufacturing/composites/pam-composites/pam-rtm-composites-molding-simulation-software.

  2. 2.

    https://github.com/isse-augsburg/rtm-predictions.

  3. 3.

    Note that we did not use the “air entrapment” feature in PAM-RTM since that would prematurely end simulation runs, produces lagging information, and cause the experimental setup to diverge from the model setup in Leoben.

  4. 4.

    https://opencv.org/.

References

  1. Babb, D.A., et al.: Resin transfer molding process for composites (1998)

    Google Scholar 

  2. Darcy, H.P.G.: Les Fontaines publiques de la ville de Dijon. V. Dalamont (1856)

    Google Scholar 

  3. Grössing, H., Stadlmajer, N., Fauster, E., Fleischmann, M., Schledjewski, R.: Flow front advancement during composite processing: predictions from numerical filling simulation tools in comparison with real-world experiments. Polym. Compos. 37(9), 2782–2793 (2016). https://doi.org/10.1002/pc.23474

    Article  Google Scholar 

  4. Heuer, H., et al.: Review on quality assurance along the CFRP value chain - non-destructive testing of fabrics, preforms and CFRP by HF radio wave techniques. Compos. Part B Eng. 77, 494–501 (2015). https://doi.org/10.1016/j.compositesb.2015.03.022

    Article  Google Scholar 

  5. Heywood, J., et al.: On the road toward 2050: report Massachusetts Institute of Technology potential for substantial reductions in light-duty vehicle energy use and greenhouse gas emissions. Massachusetts Institute of Technology (2015). http://mitei.mit.edu/publications/

  6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  7. Lee, D.H., Lee, W.I., Kang, M.K.: Analysis and minimization of void formation during resin transfer molding process. Compos. Sci. Technol. 66(16), 3281–3289 (2006)

    Article  Google Scholar 

  8. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  9. Liu, B., Bickerton, S., Advani, S.G.: Modelling and simulation of resin transfer moulding (RTM) - gate control, venting and dry spot prediction. Compos. Part A Appl. Sci. Manuf. 27(2), 135–141 (1996). https://doi.org/10.1016/1359-835X(95)00012-Q

    Article  Google Scholar 

  10. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, November 2019

    Google Scholar 

  11. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2015, pp. 1520–1528, May 2015. https://doi.org/10.1109/ICCV.2015.178

  12. Pantelesis, N., Bistekos, E.: Process monitoring and control for the production of CFRP components. In: SAMPE Conference, pp. 5–9 (2012)

    Google Scholar 

  13. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8. IEEE (2018)

    Google Scholar 

  14. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  15. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. December 2016, pp. 1874–1883, September 2016. https://doi.org/10.1109/CVPR.2016.207

  16. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016). https://doi.org/10.1109/TMI.2016.2528162

    Article  Google Scholar 

  17. Sorg, C.: Data Mining als Methode zur Industrialisierung und Qualifizierung neuer Fertigungsprozesse für CFK-Bauteile in automobiler Großserienproduktion. Ph.D. thesis, Technische Universität München (2014)

    Google Scholar 

  18. Stieber, S.: Transfer learning for optimization of carbon fiber reinforced polymer production. Organic Computing: Doctoral Dissertation Colloquium 2018, pp. 1–12 (2018)

    Google Scholar 

  19. Stieber, S.: FlowFrontNet Checkpoints (2020). https://doi.org/10.6084/m9.figshare.12102714.v1. https://figshare.com/articles/FlowFrontNet_Checkpoints/12102714

  20. Stieber, S.: FlowFrontNet Data: Sensor to Flowfront/Dryspot (2020). https://doi.org/10.6084/m9.figshare.12063480.v4. https://figshare.com/articles/FlowFrontNet_Data_Sensor_to_Flowfront_Dryspot/12063480

  21. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. Adv. Neural Inf. Process. Syst. 2(January), 1790–1798 (2014)

    Google Scholar 

  22. Zhang, J., Pantelelis, N.: Modelling and optimisation control of polymer composite moulding processes using bootstrap aggregated neural network models. In: Proceedings of 2011 International Conference on Electric Information and Control Engineering, ICEICE 2011, vol. 1, no. 2, p. 3 (2011). https://doi.org/10.1109/ICEICE.2011.5777841

Download references

Acknowledgments

This research is funded by the Bavarian Ministry of Economic Affairs, Regional Development and Energy in the project CosiMo. We thank Ewald Fauster from Montanuniversität Leoben for his expert advice on the RTM process and Frederic Masseria from ESI for supporting our RTM-simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Stieber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stieber, S., Schröter, N., Schiendorfer, A., Hoffmann, A., Reif, W. (2021). FlowFrontNet: Improving Carbon Composite Manufacturing with CNNs. In: Dong, Y., Mladenić, D., Saunders, C. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12460. Springer, Cham. https://doi.org/10.1007/978-3-030-67667-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67667-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67666-7

  • Online ISBN: 978-3-030-67667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics