Abstract
We present PrePeP, a light-weight tool for predicting whether molecules are frequent hitters, and visually inspecting the subgraphs supporting this decision. PrePeP is contains three modules: a mining component, an encoding/predicting component, and a graphical interface, all of which are easily extensible.
The tool can be downloaded at http://scientific-data-mining.org, “Software”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aldrich, C., et al.: The ecstasy and agony of assay interference compounds (2017)
An, W.F., Tolliday, N.: Cell-based assays for high-throughput screening. Mol. Biotechnol 45(2), 180–186 (2010)
Bajorath, J.: Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1(11), 882–894 (2002)
Koptelov, M., Zimmermann, A., Bonnet, P., Bureau, R., Crémilleux, B.: Prepep: a tool for the identification and characterization of pan assay interference compounds. In: Guo, Y., Farooq, F. (eds.) KDD, pp. 462–471. ACM (2018)
Matlock, M.K., Hughes, T.B., Dahlin, J.L., Swamidass, S.J.: Modeling small-molecule reactivity identifies promiscuous bioactive compounds. J. Chem. Inf. Model. 58(8), 1483–1500 (2018)
Stork, C., Chen, Y., Šícho, M., Kirchmair, J.: Hit dexter 2.0: machine-learning models for the prediction of frequent hitters. J. Chem. Inf. Model. 59(3), 1030–1043 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Couronne, C., Koptelov, M., Zimmermann, A. (2021). PrePeP: A Light-Weight, Extensible Tool for Predicting Frequent Hitters. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12461. Springer, Cham. https://doi.org/10.1007/978-3-030-67670-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-67670-4_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67669-8
Online ISBN: 978-3-030-67670-4
eBook Packages: Computer ScienceComputer Science (R0)