Skip to main content

PrePeP: A Light-Weight, Extensible Tool for Predicting Frequent Hitters

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track (ECML PKDD 2020)

Abstract

We present PrePeP, a light-weight tool for predicting whether molecules are frequent hitters, and visually inspecting the subgraphs supporting this decision. PrePeP is contains three modules: a mining component, an encoding/predicting component, and a graphical interface, all of which are easily extensible.

The tool can be downloaded at http://scientific-data-mining.org, “Software”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://lejournal.cnrs.fr/articles/covid-19-15-milliard-de-molecules-passees-au-criblage-virtuel.

References

  1. Aldrich, C., et al.: The ecstasy and agony of assay interference compounds (2017)

    Google Scholar 

  2. An, W.F., Tolliday, N.: Cell-based assays for high-throughput screening. Mol. Biotechnol 45(2), 180–186 (2010)

    Article  Google Scholar 

  3. Bajorath, J.: Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1(11), 882–894 (2002)

    Article  Google Scholar 

  4. Koptelov, M., Zimmermann, A., Bonnet, P., Bureau, R., Crémilleux, B.: Prepep: a tool for the identification and characterization of pan assay interference compounds. In: Guo, Y., Farooq, F. (eds.) KDD, pp. 462–471. ACM (2018)

    Google Scholar 

  5. Matlock, M.K., Hughes, T.B., Dahlin, J.L., Swamidass, S.J.: Modeling small-molecule reactivity identifies promiscuous bioactive compounds. J. Chem. Inf. Model. 58(8), 1483–1500 (2018)

    Article  Google Scholar 

  6. Stork, C., Chen, Y., Šícho, M., Kirchmair, J.: Hit dexter 2.0: machine-learning models for the prediction of frequent hitters. J. Chem. Inf. Model. 59(3), 1030–1043 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Couronne, C., Koptelov, M., Zimmermann, A. (2021). PrePeP: A Light-Weight, Extensible Tool for Predicting Frequent Hitters. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12461. Springer, Cham. https://doi.org/10.1007/978-3-030-67670-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67670-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67669-8

  • Online ISBN: 978-3-030-67670-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics