Skip to main content

A Random Access Control Scheme for a NOMA-Enabled LoRa Network

  • Conference paper
  • First Online:
Communications and Networking (ChinaCom 2020)

Abstract

LoRa is one of the most prominent Low-Power Wide-Area Network (LPWAN) technologies, to accommodate pervasive Internet-of-Things (IoT) connectivities. However, its service capacity and scalability are limited due to the scarce channel resources and the Aloha-like random access mechanism specified by LoRaWAN. We propose a NOMA-enabled LoRa gateway, which permits multiple end-devices to transmit their data at the same time over a shared channel. The whole random access process are provided in detail, including collision resolution and transmission scheduling based on a Distributed Queuing (DQ) method. In addition to that, Spreading Factor (SF) allocation in the transmission scheduling phase is also considered and an optimal problem is formulated to achieve maximum data transmission rate. In order to solve the problem efficiently, an SF allocation algorithm is developed based on the matching theory. Numerical results show that our proposed scheme significantly enhances the sum achievable user rate when the number of users increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, K., Benkhelifa, F., Mccann, J.: Resource allocation for non-orthogonal multiple access (NOMA) enabled LPWA networks. arXiv: 1908.09336 (2019)

  2. Shahini, A., Ansari, N.: NOMA aided narrowband IoT for machine type communications with user clustering. IEEE IoT J. 6(4), 7183–7191 (2019)

    Google Scholar 

  3. Adelantado, F., Vilajosana, X., Tuset-Peiró, P., et al.: Understanding the limits of LoRaWAN. IEEE Commun. Mag. 55(9), 34–40 (2017)

    Article  Google Scholar 

  4. Vangelista, L.: Frequency shift chirp modulation: the LoRa modulation. IEEE Signal Process. Lett. 24(12), 1818–1821 (2017)

    Article  Google Scholar 

  5. LoRa Alliance. V1.0.3. LoRaWANTM Specification (2018)

    Google Scholar 

  6. Corce, D., Gucciardo, M., Tinnirello, I., et al.: Impact of spreading factor imperfect orthogonality in LoRa communications. In: Piva, A., Tinnirello, I., Morosi, S. (eds.) Digital Communication. Towards a Smart and Secure Future Internet. CCIS, vol. 766, pp. 165–179. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67639-5

    Chapter  Google Scholar 

  7. Mostafa, A.E., Zhou, Y., Wong, V.W.S.: Connection density maximization of narrowband IoT systems with NOMA. IEEE Trans. Wireless Commun. 18(10), 4708–4722 (2019)

    Article  Google Scholar 

  8. Wu, F., et al.: An enhanced random access algorithm based on the clustering-reuse preamble allocation in NB-IoT system. IEEE Access. 7, 183847–183859 (2019)

    Article  Google Scholar 

  9. Xu, W., Campbell, G.: A near perfect stable random access protocol for a broadcast channel. In: Proceedings of Discovering New World Communication (SUPERCOMM/ICC), pp. 370–374. IEEE Press, Chicago (1992)

    Google Scholar 

  10. Zhang, X., Campbell, G.: Performance analysis of distributed queueing random access protocol–DQRAP. DQRAP Research Group report 93-1 (1994)

    Google Scholar 

  11. Tuset-Peiro, P., Vazquez-Gallego, F., Alonso-Zarate, J., et al.: LPDQ: a self-scheduled TDMA MAC protocol for one-hop dynamic low-power wireless networks. Pervasive Mobile Comput. 20, 84–99 (2015)

    Article  Google Scholar 

  12. Zhang, K., Marchiori, A.: Crowdsourcing low-power wide-area IoT networks. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 41–49. IEEE Press, Kona (2017)

    Google Scholar 

  13. Wu, W., Li, Y., Zhang, Y., et al.: Distributed queueing based random access protocol for LoRa networks. IEEE IoT J. 7(1), 763–772 (2020)

    Google Scholar 

  14. SX1272/3/6/7/8 LoRa Modem Design Guide AN1200.13 Revision 1 (2013)

    Google Scholar 

  15. Reynders, B., Meert, W., Pollin, S.: Power and spreading factor control in low power wide area networks. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE Press, Paris (2017)

    Google Scholar 

  16. El-Aasser, M., Elshabrawy, T., Ashour, M.: Joint spreading factor and coding rate assignment in LoRaWAN networks. In: 2018 IEEE Global Conference on Internet of Things (GCIoT), pp. 1–7. IEEE Press, Alexandria (2018)

    Google Scholar 

  17. Su, B., Qin, Z., Ni, Q.: Energy efficient resource allocation for uplink LoRa networks. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE Press, Abu Dhabi (2018)

    Google Scholar 

  18. Amichi, L., Kaneko, M., Rachkidy, N. E., et al.: Spreading factor allocation strategy for LoRa networks under imperfect orthogonality. In: 2019 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE Press, Shanghai (2019)

    Google Scholar 

  19. Amichi, L., Kaneko, M., Fukuda, E.H., et al.: Joint allocation strategies of power and spreading factors with imperfect orthogonality in LoRa networks. IEEE Trans. Commun. 68(6), 3750–3765 (2020)

    Article  Google Scholar 

  20. Waret, A., Kaneko, M., Guitton, A., et al.: LoRa throughput analysis with imperfect spreading factor orthogonality. IEEE Wireless Commun. Lett. 8, 408–411 (2019)

    Article  Google Scholar 

  21. Gu, Y., Saad, W., Bennis, M., et al.: Matching theory for future wireless networks: fundamentals and applications. IEEE Commun. Mag. 53, 52–59 (2015)

    Article  Google Scholar 

  22. Laporte-Fauret, B., Temim, M.A.B., Ferre, G., et al.: An enhanced LoRa-like receiver for the simultaneous reception of two interfering signals. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6, Istanbul (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wennai Wang .

Editor information

Editors and Affiliations

Appendices

A Appendix 1

We now prove Eq. (9). Under the assumption of Rayleigh fading, \(\gamma _n\) can be modeled as exponential random variable with mean \(\bar{\gamma }_n=\mathrm {A}(f_c)/(d_n^\alpha \sigma _c^2)\), then Eq. (8) can be developed as

$$\begin{aligned} \begin{aligned} P_{ns}^\mathrm{(case2)} =&P\left( \frac{\gamma _n p_n}{\sum \limits _{i=n+1}^{|\mathcal {U}_s|}x_{is}\gamma _ip_i +1}\ge \mu \Bigg | \gamma _{n+1}\cdots \gamma _{|\mathcal {U}_s|} \right) \times P\left( \gamma _{n+1}\cdots \gamma _{|\mathcal {U}_s|} \right) \\ =&\int _{\gamma _{n+1}}\cdots \int _{\gamma _{|\mathcal {U}_s|}} P\left( \gamma _n\ge \frac{\mu }{p_n}\left( \sum \limits _{i=n+1}^{|\mathcal {U}_s|} x_{is}\gamma _i +1\right) \right) \\&\times P\left( \gamma _{n+1}\cdots \gamma _{|\mathcal {U}_s|} \right) \, d\gamma _{n+1}\cdots d\gamma _{|\mathcal {U}_s|}. \end{aligned} \end{aligned}$$
(16)

Let \(Z=P\left( \gamma _n\ge \frac{\mu }{p_n}\left( \sum \limits _{i=n+1}^{|\mathcal {U}_s|} x_{is}\gamma _i +1\right) \right) \), then

$$\begin{aligned} \begin{aligned} Z =&\int \limits _a^\infty p(\gamma _n)\, d\gamma _n = \int \limits _a^\infty \frac{1}{\bar{\gamma }_n}e^{-\frac{\gamma _n}{\bar{\gamma }_n}}\, d\gamma _n\\ =&\, e^{-\frac{\mu \left( \sum \limits _{i=n+1}^{|\mathcal {U}_s|} x_{is}\gamma _ip_i +1\right) }{\bar{\gamma }_np_n}}, \end{aligned} \end{aligned}$$
(17)

where \(a=\frac{\mu }{p_n}\left( \sum \limits _{i=n+1}^{|\mathcal {U}_s|} x_{is}\gamma _ip_i +1\right) \). Substituting Z in Eq. (16), we obtain that

(18)

B Appendix 2

We derivate Eq. (11) with similar calculations in Appendix 1.

$$\begin{aligned} \begin{aligned} P_{ns}^\mathrm{(case3)} =&P\left( \frac{\gamma _np_n}{\sum \limits _{j\in \mathcal {S}\backslash \{s\}}\sum \limits _{i\in \mathcal {N}\backslash \{n\}}x_{ij}\gamma _ip_i+ \sum \limits _{i=n+1}^{|\mathcal {U}_s|}x_{is}\gamma _ip_i +1}\ge \mu \Bigg | \gamma _{1}\cdots \gamma _{n-1}\gamma _{n+1}\cdots \gamma _N \right) \\&\times P\left( \gamma _{1}\cdots \gamma _{n-1}\gamma _{n+1}\cdots \gamma _N \right) \\ =&\int _{\gamma _{1}}\cdots \int _{\gamma _N} P\left( \gamma _n\ge \frac{\mu }{p_n}\left( \sum \limits _{j\in \mathcal {S}\backslash \{s\}}\sum \limits _{i\in \mathcal {N}\backslash \{n\}}x_{ij}\gamma _ip_i+ \sum \limits _{i=n+1}^{|\mathcal {U}_s|} x_{is}\gamma _ip_i +1\right) \right) \\&\times P\left( \gamma _{1}\cdots \gamma _N \right) \, d\gamma _{1}\cdots d\gamma _N. \end{aligned} \end{aligned}$$
(19)

Let \(Z'=P\left( \gamma _n\ge \frac{\mu }{p_n}\left( \sum \limits _{j\in \mathcal {S}\backslash \{s\}}\sum \limits _{i\in \mathcal {N}\backslash \{n\}}x_{ij}\gamma _i+\sum \limits _{i=n+1}^{|\mathcal {U}_s|} x_{is}\gamma _i +1\right) \right) \),

$$\begin{aligned} \begin{aligned} Z' =&\int \limits _{a'}^\infty \frac{1}{\bar{\gamma }_n}e^{-\frac{\gamma _n}{\bar{\gamma }_n}}\, d\gamma _n\\ =&\, e^{-\frac{\mu \left( \sum \limits _{j\in \mathcal {S}\backslash \{s\}}\sum \limits _{i\in \mathcal {N}\backslash \{n\}}x_{ij}\gamma _ip_i+\sum \limits _{i=n+1}^{|\mathcal {U}_s|} x_{is}\gamma _ip_i +1\right) }{\bar{\gamma }_np_n}}, \end{aligned} \end{aligned}$$
(20)

where \(a'=\frac{\mu }{p_n}\left( \sum \limits _{j\in \mathcal {S}\backslash \{s\}}\sum \limits _{i\in \mathcal {N}\backslash \{n\}}x_{ij}\gamma _ip_i+\sum \limits _{i=n+1}^{|\mathcal {U}_s|} x_{is}\gamma _ip_i +1\right) \). Substituting \(Z'\) in Eq. (19), we obtain

(21)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, W., Wang, W., Yang, J., Wang, B. (2021). A Random Access Control Scheme for a NOMA-Enabled LoRa Network. In: Gao, H., Fan, P., Wun, J., Xiaoping, X., Yu, J., Wang, Y. (eds) Communications and Networking. ChinaCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 352. Springer, Cham. https://doi.org/10.1007/978-3-030-67720-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67720-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67719-0

  • Online ISBN: 978-3-030-67720-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics