Abstract
Wireless channels that are widely adopted between autonomous vehicles are vulnerable to eavesdropping or interferences, so that attacks on cybersecurity may lead to serious consequences, such as losing control of vehicles. In particular, the cryptographic methods used for information security rely on the strict privacy of keys, which is often difficult to guarantee in a wireless environment. This paper proposes a context-bound cybersecurity framework, which protects communication from eavesdroppers by encrypting critical data with a dynamic context among vehicles. The context is synchronized among vehicles through a progressive encoding method, which makes it difficult for third parties to learn the entire context by eavesdropping through the channels, especially in the case of mobility. The normal vehicles may extract a security key from the context to encrypt and decrypt key data, but it is impossible or overwhelmingly expensive for the third parties to decode the data transmitted due to the lack of the context. Besides, the proposed framework also provides a promising way to resist the upcoming quantum computers, because it will become more and more difficult for third parties to collect the complete context as the context continues to update.
Funded by the National Natural Science Foundation of China (61273235), and the Defence Advance Research Foundation of China (61400020109).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, D., Dodis, Y., Jafargholi, Z., Miles, E., Reyzin, L.: Amplifying privacy in privacy amplification. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 183–198. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_11
Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H., Zedan, H.: A comprehensive survey on vehicular ad hoc network. J. Netw. Comput. Appl. 37, 380–392 (2014)
Alaba, F.A., Othman, M., Hashem, I.A.T., Alotaibi, F.: Internet of things security: a survey. J. Netw. Comput. Appl. 88, 10–28 (2017). https://doi.org/10.1016/j.jnca.2017.04.002
Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Processing, pp. 1–4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5
Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_41
Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw. 48(5), 701–716 (2005). https://doi.org/10.1016/j.comnet.2005.01.010
Cao, J., Yu, P., Xiang, X., Ma, M., Li, H.: Anti-quantum fast authentication and data transmission scheme for massive devices in 5G NB-IOT system. IEEE Internet Things J. 6(6), 9794–9805 (2019)
Cao, J., et al.: A survey on security aspects for 3GPP 5G networks. IEEE Commun. Surv. Tutor. 22(1), 170–195 (2019)
Chaudhary, R., Aujla, G.S., Kumar, N., Zeadally, S.: Lattice-based public key cryptosystem for internet of things environment: challenges and solutions. IEEE Internet Things J. 6(3), 4897–4909 (2019). https://doi.org/10.1109/JIOT.2018.2878707
Conti, M., Dragoni, N., Lesyk, V.: A survey of man in the middle attacks. IEEE Commun. Surv. Tutor. 18(3), 2027–2051 (2016). https://doi.org/10.1109/COMST.2016.2548426
Cui, C., et al.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11(3), 034053 (2019)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)
Ebrahimi, S., Bayat-Sarmadi, S., Mosanaei-Boorani, H.: Post-quantum cryptoprocessors optimized for edge and resource-constrained devices in IoT. IEEE Internet Things J. 6(3), 5500–5507 (2019)
Guan, L., Lin, J., Ma, Z., Luo, B., Xia, L., Jing, J.: Copker: a cryptographic engine against cold-boot attacks. IEEE Trans. Dependable Secure Comput. 15(5), 742–754 (2016)
Handler, I.: Data sharing defined - really! IEEE Comput. 51(2), 36–42 (2018). https://doi.org/10.1109/MC.2018.1451659
Huh, S., Cho, S., Kim, S.: Managing IoT devices using blockchain platform. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 464–467. IEEE (2017)
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Liu, Y., et al.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123(10), 100505 (2019)
Luzzi, L., Vehkalahti, R., Ling, C.: Almost universal codes for mimo wiretap channels. IEEE Trans. Inf. Theory 64(11), 7218–7241 (2018). https://doi.org/10.1109/TIT.2018.2857487
Mathur, S., Trappe, W., Mandayam, N., Ye, C., Reznik, A.: Radio-telepathy: extracting a secret key from an unauthenticated wireless channel. In: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, pp. 128–139 (2008)
Maurer, U.M.: A universal statistical test for random bit generators. J. Cryptol. 5(2), 89–105 (1992). https://doi.org/10.1007/BF00193563
Meng, W., Li, W., Yang, L.T., Li, P.: Enhancing challenge-based collaborative intrusion detection networks against insider attacks using blockchain. Int. J. Inf. Secur. 19(3), 279–290 (2019). https://doi.org/10.1007/s10207-019-00462-x
Mollah, M.B., Azad, M.A.K., Vasilakos, A.V.: Secure data sharing and searching at the edge of cloud-assisted internet of things. IEEE Cloud Comput. 4(1), 34–42 (2017). https://doi.org/10.1109/MCC.2017.9
Ortega, V., Bouchmal, F., Monserrat, J.F.: Trusted 5G vehicular networks: blockchains and content-centric networking. IEEE Veh. Technol. Mag. 13(2), 121–127 (2018)
Pirandola, S., et al.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9(6), 397–402 (2015)
Preneel, B.: Cryptography and information security in the post-snowden era. In: TELERISE@ ICSE, p. 1 (2015)
Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5_29
Riyadi, M.A., Khafid, M.R.A., Pandapotan, N., Prakoso, T.: A secure voice channel using chaotic cryptography algorithm. In: Proceedings of International Conference on Electrical Engineering and Computer Science (ICECOS), pp. 141–146 (2018)
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-allen and hamilton inc mclean va (2001)
Singh, J., Pasquier, T.F.J., Bacon, J., Ko, H., Eyers, D.M.: Twenty security considerations for cloud-supported internet of things. IEEE Internet Things J. 3(3), 269–284 (2016). https://doi.org/10.1109/JIOT.2015.2460333
Wang, Z., Han, Y., Liu, W., Chen, L.: Anti-quantum generalized signcryption scheme based on multivariate and coding. In: Proceedings of Chinese Control and Decision Conference (CCDC), pp. 3587–3594 (2019)
Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K.K., Gao, X.: A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 36(4), 679–695 (2018)
Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor. 15(4), 2046–2069 (2013). https://doi.org/10.1109/SURV.2013.031413.00127
Zhang, J., Zheng, K., Zhang, D., Yan, B.: AATMS: An anti-attack trust management scheme in VANET. IEEE Access 8, 21077–21090 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Li, L., Ma, B., Li, Y., Mao, Y. (2021). Context-Bound Cybersecurity Framework for Resisting Eavesdropping in Vehicle Networks. In: Gao, H., Fan, P., Wun, J., Xiaoping, X., Yu, J., Wang, Y. (eds) Communications and Networking. ChinaCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 352. Springer, Cham. https://doi.org/10.1007/978-3-030-67720-6_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-67720-6_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67719-0
Online ISBN: 978-3-030-67720-6
eBook Packages: Computer ScienceComputer Science (R0)