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Abstract. The locality of words is a relatively young structural com-
plexity measure, introduced by Day et al. in 2017 in order to define
classes of patterns with variables which can be matched in polynomial
time. The main tool used to compute the locality of a word is called
marking sequence: an ordering of the distinct letters occurring in the
respective order. Once a marking sequence is defined, the letters of the
word are marked in steps: in the ith marking step, all occurrences of
the ith letter of the marking sequence are marked. As such, after each
marking step, the word can be seen as a sequence of blocks of marked
letters separated by blocks of non-marked letters. By keeping track of the
evolution of the marked blocks of the word through the marking defined
by a marking sequence, one defines the blocksequence of the respective
marking sequence. We first show that the words sharing the same block-
sequence are only loosely connected, so we consider the stronger notion
of extended blocksequence, which stores additional information on the
form of each single marked block. In this context, we present a series of
combinatorial results for words sharing the extended blocksequence.

1 Introduction

The locality of words (also called strings) is a structural-complexity measure
which has been introduced in [4]. To define the locality of a word several notions
are important. Firstly, a marking sequence for that word is an ordering of the
symbols occurring in it. For each marking sequence, we can mark the letters of
the word in steps, as follows: in the ith marking step, all occurrences of the ith

letter of the marking sequence are marked. As such, after each marking step,
the word can be seen as a sequence of blocks of marked letters separated by
blocks of non-marked letters. Clearly, after each new marking step of a marking
sequence, more symbols become marked, so the marked blocks grow and they
may unite. Observing the evolution of the marked blocks leads to the definition
of the marking number of the respective marking sequence: the maximal number
of marked blocks which occur in the word after a marking step. The locality
number of a word (for short, locality) is defined as the minimal marking number
over all marking sequences for that word.
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More precisely, a word is k-local if there exists a marking sequence for the
respective word such that after each step of the sequence there are at most k con-
tiguous blocks of marked symbols in the word. The locality number (or, for short,
locality) of a word is the smallest k for which that word is k-local, or, in other
words, the minimum marking number over all marking sequences. For instance, if
banana is marked according to the marking sequence (b, n, a) the largest number
of marked blocks we get (i.e., the marking number of the sequence) is 3. Thus,
banana is 3-local. However, if we take the marking sequence (n, a, b) the largest
number of blocks we get is 2 - and we cannot do better. Thus, banana has the
locality number 2. The locality number of a word describes how many separated
(or isolated) marked regions must at least be maintained in exploring the word
w.r.t. possible marking sequences; thus, it can be interpreted as a structural
complexity measure (e.g., by associating some cost per marked region).

The original motivation for the introduction of locality in [4] is the fact that
patterns with variables which have a low locality can be efficiently matched. A
pattern is a word that consists of constant letters (e. g., a, b, c) and variables
(e. g., x1, x2, x3, . . .). A pattern is mapped to a word by uniformly replacing the
variables by words with constant letters. For example, x1x1ax2x2 can be mapped
to acacacc, by replacing x1 by ac and x2 by c. If a pattern α can be mapped
to the word w, we say that α matches w. Deciding whether a given pattern
matches a given word is an important problem with applications in many areas:
combinatorics on words (word equations [13, Chapters 12 and 13], unavoid-
able patterns [13, Chapter 3]), formal-language theory (pattern languages [1]),
and learning theory (inductive inference [1], PAC-learning [12]), database the-
ory (extended conjunctive regular path queries [2]), programming languages (the
processing of extended regular expressions with backreferences [9,10], used in
programming languages like Perl, Java, Python, etc). In general, the matching
problem is NP-complete [1]. This is especially bad for some computational tasks
on patterns which implicitly solve the matching problem: such problems become,
inherently, intractable. One such example is the task of finding descriptive pat-
terns for a set of strings [6], which is useful in the context of learning theory.

A thorough analysis of the complexity of the matching problem for patterns
of variables was performed [14,7,8,5] and some classes of patterns admitting
polynomial time matching, usually defined by restricting structural parameters,
were identified. In [4] it was shown that k-local patterns can be matched in
polynomial time when k is a constant, and, based on the results of [6], that
descriptive k-local patterns can be efficiently computed for a given set of strings.

Thus, the study of the locality of words and patterns seems interesting and
well-motivated and the most natural problem one could identify in this area
was computing the locality number of a word. The problem Loc of deciding
whether the locality of a given word is upper bounded by a given number k ∈
N was shown to be NP-complete in [3]. More interestingly, in the same work,
strong (and surprising) relations between the string-decision problem Loc and
the graph decision problems Cutwidth (asking to decide whether the cutwidth
of a graph is upper bounded by a given number) and Pathwidth (asking to



decide whether the pathwidth of a graph is upper bounded by a given number)
were established. These connections explained, on the one hand, all kinds of
algorithmic difficulties arising in solving Loc, and, on the other hand, lead to a
state-of-the-art approximation algorithm for computing the cutwidth of graphs.

Our contribution. We extend the study of the locality of words by taking a
combinatorics-on-words-centric perspective. As explained before, while marking
a word with respect to a marking sequence, we obtain after each step a set of fac-
tors of the word which consist of marked letters and are bounded by unmarked
letters. This set of factors provides a snapshot of the word after each marking
step. In our setting the number of marked blocks from each snapshot is impor-
tant. We will call the sequence of numbers of blocks occurring in these snapshots,
in the order in which they occur during the marking sequence, the blocksequence
associated to the marking sequence. Looking again at the word banana and the
marking sequence (b, n, a) we obtain the corresponding blocksequence (1, 3, 1).

Now, if we assume that we are only given the sequence (1, 3, 1), we can triv-
ially tell that this is a blocksequence of a word over a three-letter alphabet.
Taking into account that the letters may be renamed we can assume that this
three-letter alphabet consists of the letters a, b, and c, and the marking sequence
defining the considered blocksequence is σΣ = (a, b, c). In other words, we can
restrict ourselves to a canonical marking sequence, and our reasoning will be
true up to the renaming of all letters. This leads to the question of finding the
set of words having the given blocksequence when marked according to σΣ and
understanding what these words have in common from a combinatorial point
of view, e.g., w.r.t. to their locality number. As we have seen the locality of
banana is 2 and not 3, so is this a characteristic of all words sharing the block-
sequence (1, 3, 1)? We show that the blocksequence alone does not provide much
information, and thus we enrich the blocksequence with more combinatorial in-
formation: we do not only store the number of marked blocks in each step, but
also the kind each occurrence of a letter has in the respective step, e.g. neigh-
bour, join, or singleton. In this setting we are able to define a normal form for
each class of words having the same extended blocksequence. We show how to
obtain the normal form for a given word by defining three rules and we compare
the locality of the normal form with the locality of the words from the same
class. We finally present, in the case of words over three-letters alphabets, how
the optimal marking sequence (the one determining the locality of the word) can
be obtained by examining the extended block sequence.

2 Preliminaries and Initial Results

§ Basic Definitions. Let N be the set of natural numbers and N0 = N ∪ {0}.
Let [n] denote the set {1, . . . , n} and [n]0 = [n] ∪ {0} for an n ∈ N.

An alphabet is a finite set Σ = {a1, . . . , aℓ} of ℓ ∈ N symbols, called letters.
The alphabet is called ordered if there exists a total ordering < on the letters.
We assume here Σ to be ordered with ai < ai+1 for all i ∈ [ℓ − 1]. Σ∗ denotes
the set of all finite words over Σ, i.e. the free monoid over Σ. The empty word



is denoted by ε and Σ+ = Σ∗\{ε}. The length of a word w is denoted by |w|.
Define Σk := {w ∈ Σ∗| |w| = k} for a k ∈ N. The number of occurrences of
a letter a ∈ Σ in a word w ∈ Σ∗ is denoted by |w|a. Define the set of letters
occurring in w ∈ Σ∗ by alph(w) = {a ∈ Σ| |w|a > 0}. The ith letter of a word
w is given by w[i] for i ∈ [|w|]. For a given word w ∈ Σn the reversal of w is
defined by wR = w[n]w[n − 1] · · ·w[2]w[1]. The powers of w ∈ Σ∗ are defined
recursively by w0 = ε, wn = wwn−1 for n ∈ N. A word u ∈ Σ∗ is a factor of
w ∈ Σ∗, if w = xuy holds for some words x, y ∈ Σ∗. Moreover, u is a prefix
(resp., suffix ) of w if x = ε (resp., y = ε) holds. The factor w[i]w[i + 1] · · ·w[j]
of w is denoted by w[i..j], for 1 ≤ i ≤ j ≤ |w|. Given a property P : Σ → {0, 1},
a factor u is a P -block of a word w = xuy if P (u[i]) = 1 for all i ∈ [|u|] and
P (x[|x|]) = P (y[1]) = 0 (if x or y are empty the constraint does not have to be
fulfilled). For the property Pa defined by Pa(x) = 1 iff x = a for x ∈ Σ, the word
abaaabaabb has 3 Pa-blocks (or short three a-blocks).

In the following, we give the main definitions on k-locality, following [4].

Definition 1. Let Σ = {x | x ∈ Σ} be the set of marked letters. For a word
w ∈ Σ∗, a marking sequence of the letters occurring in w, is an enumeration
(x1, x2, . . . , x| alph(w)|) of alph(w). We say that ai ≤σ aj if ai occurs before aj in
σ, for i, j ∈ [| alph(w)|]. The enumeration obeying the total order of the alphabet
is called the canonical marking sequence σΣ . A letter xi is called marked at stage
k ∈ N if i ≤ k. Moreover, we define wk, the marked version of w at stage k, as
the word obtained from w by replacing all xi with i ≤ k by xi. A factor of wk is a
marked block if the defining property of the block is that it contains only elements
from Σ. The locality of a word w w.r.t. a marking sequence σ (locσ(w)) is the
maximal number of marked blocks that occurred during the marking process.

In the context of Definition 1, w| alph(w)| is always completely marked. Using
the idea of a marking sequence, we define the k-locality of a word.

Definition 2. A word w ∈ Σ∗ is k-local for k ∈ N0 if there exists a marking
sequence (x1, . . . , x| alph(w)|) of alph(w), such that, for all i ≤ | alph(w)| we have
that wi at stage i, has at most k marked blocks. A word is called strictly k-local
if it is k-local but not (k − 1)-local.

Consider the word banana ∈ {a, b, n}∗. The marking sequence (a, b, n) leads
to the sequence w1 = banana (3 marked blocks), w2 = banana (3 marked blocks),
and w3 = banana (1 marked block), i.e. banana is 3-local. In fact, it is strictly
2-local witnessed by the marking sequence (n, a, b) (it is not 1-local, since this
would imply to start with marking b and either marking afterwards a or n leads
to more than one marked block). As a second example consider the word a

3
b
4.

This word is 1-local since for both marking sequences (a, b) and (b, a) the blocks
of letters are marked in one step. This motivates to consider the notion of the
print of a word - or condensed word - introduced in [15] and [3], respectively.

Definition 3. For w = xk1

1 xk2

2 . . . xkm
m ∈ Σ∗ with ki,m ∈ N, i ∈ [m], and

xj 6= xj+1 for j ∈ [m−1], the print (condensed form) of w is defined by x1 . . . xm.
A word is called condensed, if it is its own print.



§ Initial Results. Since in our setting the multiplicity of single letters does
not affect the results (all these letters form a single marked block), we restrict
the setting to condensed words implicitly, i.e. each w ∈ Σ∗ is implicitly meant
to be condensed. Now we define the notion of the blocksequence that captures
the number of marked blocks during the marking process. Moreover, we assume
alph(w) = Σ.

Definition 4. Let w ∈ Σ∗ and σ = (y1, . . . , yℓ) be a marking sequence. The
blocksequence βσ(w) is the sequence (b1, . . . , bℓ) over N such that in σ’s ith

stage on marking w, bi blocks are marked, for all i ∈ [ℓ].

Coming back to banana, the marking sequence (a, b, n) leads to the blockse-
quence (3, 3, 1) and the marking sequence (n, a, b) to (2, 1, 1). Since |w|| alph(w)|

is one marked block, the last position in a blocksequence has to be 1 and more-
over the first position is exactly |w|y1

. Changing the perspective, n-tuples (with
the last position being 1) can be seen as a blocksequence w.r.t. the canonical
marking sequence given by the alphabet and its order. This point of view is
inspired by the idea to group words with the same blocksequence in order to
deduce information about their locality.

Definition 5. For a given ℓ-tuple β = (b1, . . . , bℓ−1, 1) define the set of words
that give exactly β on marking with σΣ by Wβ = {w ∈ Σ∗|βσΣ

(w) = β}.

First, we prove that the class Wβ is not empty for all β = (b1, . . . , bℓ−1, 1).

Theorem 6. For all β = (b1, . . . , bℓ−1, 1) ∈ N
ℓ there exists nβ ∈ N such that for

all n ≥ nβ we have Σn ∩Wβ 6= ∅ and for all m < nβ we have Σm ∩Wβ = ∅.

Proof. Set nβ =
∑

i∈[ℓ] ∆(bi, bi−1) with b0 = 0, bℓ = 1 and the notation

∆(x, y) =







y − x if y > x,

1 if x = y,

x− y if x > y

for x, y ∈ N. We will show that there exists a word w ∈ Σnβ whose blocksequence
w.r.t. the canonical marking sequence σΣ is β. This word is defined by the
following algorithm. Define in the first step the blocks u1,1 = a1, . . . , u1,b1 = a1.
For each i ∈ {2, . . . , ℓ} do the following:

– if bi = bi−1, let ui,1 = ui−1,1ai, and let ui,j = ui−1,j for j ∈ {2, . . . , bi},
– if bi < bi−1 and d = ∆(bi, bi−1) = bi−1 − bi, let

ui,1 = ui−1,1ai · · ·ui−1,daiui−1,d+1

and ui,j = ui−1,j+d for j ∈ {2, . . . , bi−1 − d},
– if bi > bi−1 and d = ∆(bi, bi−1) = bi − bi−1, let

ui,j = ui−1,j , for j ∈ {1, . . . , bi−1} and ui,bi−1+j = ai for j ∈ [d].



Finally, let w = uℓ,1. It is immediate that |w| = nβ and its blocksequence w.r.t.
σΣ is β. Notice that w is not necessarily the unique word in Σnβ ∩Wβ . For all
w′ ∈ Σ∗ with condensed form w, the blocksequence of w′ w.r.t. σΣ is β. Thus,
for all n ≥ nβ we have Σn ∩Wβ 6= ∅.

It remains to show that for all m < nβ we have Σm ∩Wβ = ∅. Let u be a
word whose blocksequence w.r.t. the marking sequence σΣ is β, i.e. u ∈Wβ . We
will show by induction on i that

∑

j∈[i] |u|aj ≥
∑

j∈[i] ∆(bj , bj−1). The property
holds clearly for i = 1. Assume that it holds for all i − 1. We will show it for i

by case analysis.
case 1: bi = bi−1

Since we have |u|ai ≥ 1 and
∑

j∈[i−1] |u|aj ≥
∑

j∈[i−1] ∆(bj , bj−1), we immedi-

ately get
∑

j∈[i] |u|aj ≥
∑

j∈[i] ∆(bj , bj−1) by ∆(bi, bi−1) = 1.
case 2: bi > bi−1

One needs to have |u|ai ≥ bi− bi−1, as otherwise we could not produce bi− bi−1

new blocks by marking the letters ai. As
∑

j∈[i−1] |u|aj ≥
∑

j∈[i−1] ∆(bj , bj−1),

we immediately have
∑

j∈[i] |u|aj ≥
∑

j∈[i] ∆(bj , bj−1), because ∆(bi, bi−1) =
bi − bi−1.
case 2: bi < bi−1

Here, one needs to decrease the number of blocks, and this means that some
blocks need to be joined. More precisely, one needs to decrease the number
of blocks to bi so at least bi−1 − bi + 1 blocks of the existing marked blocks
need to be joined. For this, we need bi−1 − bi letters ai, so |u|ai ≥ bi−1 − bi.
As

∑

j∈[i−1] |u|aj ≥
∑

j∈[i−1] ∆(bj , bj−1), we immediately have
∑

j∈[i] |u|aj ≥
∑

j∈[i] ∆(bj , bj−1), because ∆(bi, bi−1) = bi−1 − bi.

This concludes our proof, as we get that |u| ≥ nβ . ⊓⊔

In fact, one can characterise precisely the set Σnβ ∩ Wβ , as well as the
condensed words from Wβ .

Theorem 7. For a blocksequence β = (b1, . . . , bℓ−1, 1) ∈ N
ℓ, we can define exact

procedures that enumerate

A. the words in Σnβ ∩Wβ,
B. all condensed words in Wβ.

Proof. We first show item A.

The idea of this proof follows closely the proof of Theorem 6, so we will use
the same notations as in the respective proof. In the respective proof, we have
constructed a word w ∈ Σnβ whose blocksequence w.r.t. the canonical marking
sequence σΣ is β.

We can extend the respective construction to construct any word in Σnβ∩Wβ .
For simplicity, we describe this as a non-deterministic algorithm.

Just like before, define in the first step the blocks u1,1 = a1, . . . , u1,b1 = a1.
Then, we generate nondeterministically a word from the set Σnβ∩Wβ as follows.
For i ∈ {2, . . . , ℓ}, in increasing order, do:

– if bi = bi−1, choose a j ∈ [b1]; let ui,j = ui−1,jai, and let ui,t = ui−1,t for
t ∈ [bi] \ {t},



– if bi < bi−1 and d = ∆(bi, bi−1) = bi−1 − bi, choose nondeterministically
d pairs of blocks (ui−1,tj , ui−1,tj+1) for j ∈ [d] (and assume that they are
ordered w.r.t. their second index).
We now process the list of blocks ui−1,g, with g ∈ [bi−1] as follows. For j

from 1 to d, concatenate the block ending with ui−1,tj , a letter ai, and the
block starting with ui−1,tj+1) (these blocks were consecutive in our list).
The list of blocks we obtain this way has bi elements. We define ui,g as the
gth block of this list.

– if bi > bi−1 and d = ∆(bi, bi−1) = bi − bi−1, let first

u′
i,j = ui−1,j , for j ∈ {1, . . . , bi−1} and u′

i,bi−1+j = ai for j ∈ [d].

Define two ordered lists: L1 is the list of the words u′
i,j for j ∈ {1, . . . , bi−1}

(ordered left to right increasingly w.r.t. the index j); L2 is the list of the
words u′

i,bi−1+j for j ∈ [d] (ordered left to right increasingly w.r.t. the index

j).
For j ∈ [bi], choose one of the lists L1 and L2 nondeterministically, remove
its first element u, define ui,j = u.

Finally, let w = uℓ,1. It is immediate that |w| = nβ and its blocksequence
w.r.t. σΣ is β.

Assume now that there is w ∈ Σnβ ∩Wβ that cannot be obtained by this
procedure. Clearly, w is a condensed word (otherwise, a word shorter than nβ

would be in Wβ , contradiction). Following the proof of Theorem 6, we get that in
the ith step of the marking sequence β on w we need to mark exactly ∆(bi, bi−1)
letters ai, for i ≥ 2. So, we execute the marking sequence β on w. In the first
step, we mark exactly b1 letter ai, and no two of them occur on consecutive
positions of w. Now, assume that till step i − 1, the blocks we marked can be
obtained by the nondeterministic process we described. We now move to step i.
Assume that w has the marked blocks ui−1,j, for j ∈ [bi−1]. If bi = bi−1, we have
that the number of letters ai contained in w is exactly 1. The only possibility
is that this letter ai occurs next to an already existing block. If bi < bi−1, we
have that the number of letters ai contained in w is exactly bi−1 − bi. The only
possibility is that all these letter ai connect already existing blocks. If bi > bi−1,
we have that the number of letters ai contained in w is exactly bi − bi−1. The
only possibility is that all these letter ai create new blocks, not connected to the
existing ones. But in all cases, the blocks can be created by our nondeterministic
algorithm. By induction, we get that w is generated by our algorithm.

To enumerate all the words in Σnβ ∩Wβ , it is enough to implement our
nondeterministic algorithm using backtracking.

This concludes the proof of item A.

We can now show item B. The proof is quite similar. The only major
difference is that, when generating the condensed words in Wβ by a nondeter-
ministic algorithm as above, we do not know the exact number of letters we need
to insert in each step, but only that they need to be more at least ∆(bi, bi−1)
(in step i), and they should not create powers (e.g., a2i in step i).



The algorithm is the following. We define in the first step the blocks u1,1 =
a1, . . . , u1,b1 = a1; in this case we do not have any other choice. Then, we generate
nondeterministically a condensed word from the set Wβ as follows. For i ∈
{2, . . . , ℓ}, in increasing order, do:

– Start with the blocks ui−1,j , with j ∈ [bi−1].
– We first nondeterministically choose several groups of two or more consecu-

tive blocks (of the existing blocks) and concatenate them (in the same order)
also putting ai letters between each two blocks; then, we choose several of
the current blocks, and we concatenate single ai-letters at both their ends;
finally, we create several blocks consisting of a single letter ai each, so that
in the end we have exactly bi blocks.

– The blocks obtained in this way are now the blocks ui,j .

Clearly, one needs to be careful in making sure that when we want to decrease
the number of blocks when moving from step i−1 to step i, we first concatenate
enough blocks so that we have at most bi blocks after the first nondeterministic
step.

Finally, let w = uℓ,1.
It is clear that a word obtained by our procedure is in W and is condensed.

By a proof similar to that from item A, we can show by induction that any
condensed word in Wβ can be obtained by our nondeterministic algorithm.

To enumerate all the words in Wβ, it is enough to implement our nondeter-
ministic algorithm using backtracking. ⊓⊔

A blocksequence induced by σΣ does not determine a word uniquely wit-
nessed by abcba and abca for the blocksequence (2, 2, 1). In fact, it does not
even determine a print of the words sharing the same blocksequence uniquely.
Indeed, for β = (3, 6, 1) the words w = acbcbcacbca, w′ = ababacbcbcbcbcb,
and w′′ = acbcacbcacb are in Wβ . Moreover, when considering a different mark-
ing sequence, these words have different blocksequences. For instance, (c, a, b)
leads to the blocksequences (5, 4, 1), (5, 7, 1), and (5, 3, 1), respectively. Thus, it
is to be expected that even if some words have the same blocksequence w.r.t.
a marking sequence, they may have different blocksequences w.r.t. other mark-
ing sequences, and, consequently, different localities. The main difference in the
above words are the different roles the letters have: in w the occurrences of b
are between two occurrences of a but b does not join the a-blocks whereas in w′

all gaps between the as are closed by join occurrences of b; in w′′ in each gap
between as is only one occurrence of b. This observation leads to the following
differentiation of occurrences of letters: when the letter is marked it may occur
adjacent to exactly one marked block (neighbouring), it may join two blocks
(joining), or it may not be adjacent to any marked block (singleton). Notice
that different occurrences of letters may have different roles.

Definition 8. Let σ = (y1, . . . , yℓ) be a marking sequence of w ∈ Σ∗. At stage
i ∈ [ℓ], an occurrence of yi is said to be a

- neighbour if there exist u1 ∈ Σ
+
, u2 ∈ Σ+ and v1, v2 ∈ (Σ ∪ Σ)∗ with



wi = v1u1yiu2v2, wi = v1u2yiu1v2, wi = v1u1yi, or wi = yiu1v1,

- join if there exist u1, u2 ∈ Σ
+

and v1, v2 ∈ (Σ ∪Σ)∗ with wi = v1u1yiu2v2,
- singleton if there exist u1, u2 ∈ Σ+, and v1, v2 ∈ (Σ∪Σ)∗ with wi = v1u1yiu2v2,
wi = v1u1yi, or wi = yiu2v2.
A marking sequence σ is called neighbourless for a word w ∈ Σ∗ if in any stage
while marking w with σ no neighbour occurrences exist. A word w ∈ Σ∗ is called
neighbourless if there exists a neighbourless marking sequence σ for w.

Another observation of w′ and w′′ leads to different forms of singletons: the
ones occurring between previously marked letters and the ones occurring outside.

Definition 9. Let σ = (y1, . . . , yℓ) be a marking sequence of w ∈ Σ∗. The
core of w at stage i ∈ [ℓ]>1 is defined as u ∈ Fact(w) with wi = v1uv2,
alph(v1), alph(v2) ⊆ {yi, . . . , yℓ}, and u[1], u[|u|] ∈ {y1, . . . , yi−1}. A singleton
occurrence at stage i ∈ [ℓ] of a letter yi ∈ Σ is called separating (or a separator)

if it is of the form v1u1z1yiz2u2v2 with u1, u2 ∈ Σ
+
, v1, v2 ∈ (Σ ∪ Σ)∗, and

z1, z2 ∈ Σ+. A singleton occurrence that is not a separator is called satellite.

Remark 10. Separators are within the core whereas satellites are to the left or to
the right of the core. For convenience we introduce for a given marking sequence
(y1, . . . , yℓ) of a word w ∈ Σ∗ the notations −→yi and←−yi as arbitrary elements from
the sets {yix|x ∈ {yi+1, . . . , yℓ}+} and {xyi|x ∈ {yi+1, . . . , yℓ}+} respectively,
for all i ∈ [ℓ], if −→yi (←−yi resp.) is a factor w[j1 . . . j2] of w and additionally with
w[j2 + 1] ≤σ yi (w[j1 − 1] ≤σ yi resp.) if −→yi (←−yi resp.) is not a suffix (prefix
resp.) of w. By −→yim we denote a word containing of m ∈ N0 possibly different

occurrences of −→yi (analogously for ←−yi ), e.g. bcdbc could be abbreviated by
−→
b

2.
With this notation, the palindromic structure of k-local words already mentioned
in [4] becomes clearer in this context: if ci is the core at stage i, the word is of
the form −→yℓ sℓ . . .

−→yi sici
←−yi r1 . . .

←−yℓ rℓ with sj , rj ∈ N0, j ∈ [l].

As we have seen, the blocksequence does not provide much information.
Therefore we refine the sets Wβ by sequences containing, as well, information
on the different types of occurrences we have just introduced.

Definition 11. Let σ = (y1, . . . , yℓ) be a marking sequence of w ∈ Σ∗. Define
the join-sequence ιw = (j1, . . . , jℓ−2) such that ji is the number of join occur-
rences of yi+1 and the separator-sequence ζw = (s1, . . . , sℓ−2) such that si is the
number of separating occurrences of yi+1. Finally define the extended blockse-
quence (ebs) by γw = (βw, ιw, ζw) w.r.t. σ.

Consider the word w = abadbcbdacbdc marked with σΣ . Regarding b, w[2]
joins the two a in stage 2 and w[5], w[7] are separating the as at positions 3 and 9.
The cs at position 6 and 10 join two marked blocks in stage 3 but no occurrence
of c separates two marked blocks. This leads to β = (3, 5, 4, 1). Moreover we
have ι = (1, 2) and ζ = (2, 0) as join and separating sequence, resp.

Remark 12. For a blocksequence β = (b1, . . . , bn) it suffices to state n − 2 el-
ements of ι and ζ explicitly. Since we only consider condensed words the first



letter to be marked creates b1 separate blocks. These occurrences are all satellites.
Similarly the last letter joins all remaining gaps between the marked blocks.

Whereas by Theorem 6 for each sequence of natural numbers ending with 1
there exists a word having this sequence as a blocksequence, the same does not
hold for ebs: Consider ((2, 1, 1), (0), (5)) as an ebs for a ternary word. Thus we
have two occurrences of a1. Moreover, we know that marking a1 and a2 leads to
one block and consequently the two a1 need to be joined but the join-sequence
dictates that we do not have a join-occurrence of a2. So there is no word with
this ebs, which leads to the introduction of the notion of valid ebs.

Definition 13. A triple γ of sequences over natural numbers is called a valid
ebs, if there exists a word w ∈ Σ∗ with γ = γw.

Very importantly, we can exactly identify the valid ebs.

Theorem 14. A triple γ = (β, ι, ζ) of sequences β = (b1, . . . , bℓ), ι = (j1, . . . ,
jℓ−2), and ζ = (s1, . . . , sℓ−2) for ℓ ∈ N≥2 is a valid ebs w.r.t. σΣ iff bℓ = 1,
max{bi − bi+1, 0} ≤ ji ≤ bi − 1, and si = 0 if bi+1 − bi − ji = 0 as well as
bi − ji + si ≤ bi+1 for all i ∈ [ℓ− 2].

Proof. Consider firstly γ to be a valid extended blocksequence. Then there exists
w ∈ Σn with γ = γσΣ

(w). Marking w with σΣ leads to a single marked block
in the end and thus we have bℓ = 1. Let i ∈ [ℓ − 2]. At stage i we have bi
marked blocks and thus bi − 1 gaps between the marked blocks. This implies
that w marked with σΣ cannot have more than bi − 1 join occurrences of ai+1,
i.e. ji ≤ bi − 1. If bi+1 < bi, the number of blocks is decreased by marking
ai+1, i.e. blocks in stage i need to be joined. This implies ji ≥ bi − bi+1. If
bi+1 ≥ bi, the number of blocks is increased or remains the same by marking
ai+1, i.e. w does not need to have join-occurrences of ai+1. By ji ∈ N0 we get
max{bi − bi+1, 0} ≤ ji. Marking w with σΣ leads to bi marked blocks in stage i

and bi+1 marked blocks in stage i+1. Thus if bi+1−bi−ji = 0, after marking only
the join-occurrences of ai+1 leads to bi+1 blocks. By the definition of separating
occurrences follows that marking such an occurrence increases the number of
marked blocks. This implies that w does not have separating occurrences of
ai+1, namely si = 0. By the same argument we get that the blocks marked at
stage i+1 is lower bounded by the amount of blocks marked at stage i minus the
join occurrences of ai+1 plus the separating occurrences of ai+1. This concludes
the first direction.

Consider now γ = (β, ι, ζ) with β = (b1, . . . , bℓ), ι = (j1, . . . , jℓ−2), and
ζ = (s1, . . . , sℓ−2) for ℓ ∈ N≥2 and the four constraints. We prove that γ is a valid
extended blocksequence by constructing w ∈ Σ∗ with γ = γσΣ

(w) inductively.
Let • be a symbol different from all letters. Define w1 = (a1•)b1 . Let i ∈ [ℓ−2]>1

and assume wi to be constructed. Define wi+1 in the following way: firstly replace
the first ji occurrences of • by ai+1. Then replace the next • by (•ai+1)

si•.
Denote the obtained word by v. Now define wi+1 = v if bi+1 − (bi − ji + si) = 0
or as v(•ai+1)

bi+1−(bi−ji+si) otherwise. For obtaining w from wℓ−1 replace all



occurrences of • by aℓ. Notice that w is well-defined by the four constraints. If
w is marked with σΣ in the first stage we mark b1 blocks since a1 only occurs in
w1 and is never added in a later step of the construction. Assume that in stage
i we have bi marked blocks, ji join occurrences and si separating occurrences
of ai. By the definition of wi+1 we replaced the first ji occurrences of • by
ai+1. Since in wi everything but the occurrences of • are marked in stage i,
in w we have a single marked block as a prefix that includes all these join-
occurrences of ai+1 including the neighbouring block to the right. The next • in
wi was replaces by si separating occurrences of ai+1 and thus we mark another
si blocks. If bi+1 − (bi − ji + si) = 0 we have exactly bi+1 marked blocks in
w since we did not add anything to wi. If bi+1 − (bi − ji + si) > 0, we added
bi+1 − (bi − ji + si) occurrences of ai+1 to v and thus we have in stage i+ 1 in
w exactly bi − ji + si + bi+1 − bi + ji − si = bi+1 marked blocks. This proves
γ = γσΣ

(w). ⊓⊔

Remark 15. If bi = bi+1 holds for an ebs γ, the number of occurrences joining
existing blocks and singletons creating new blocks of the letter ai+1 has to be
equal and si ≤ ji. If ji = bi − 1 (all blocks are joined) then si = 0 and there
has to be exactly ji satellites. For the special case that bi = bi+1 = 1 there is
only one block before marking ai+1 and there cannot be any joins or separators
(ji = si = 0). Since bi+1 = 1 there can be no satellite occurrence as well and
therefore ai+1 can only occur as a neighbour.

Definition 16. For a valid ebs γ set Vγ = {w ∈ Σ∗| γw = γ} and define the
equivalence relation u ∼γ v if γu = γv w.r.t. a given marking sequence σ.

Moreover, for a valid ebs γ, we can show that all words in Vγ have the same
length (in contrast to the words of Wβ, cf. Theorem 6). This will allow us to
define later a normal form for each valid ebs.

Theorem 17. For a valid ebs γ = ((b1, . . . , bℓ−1, 1), (j1, . . . , jℓ−2), ζ), all words

in Vγ have length b1 + bℓ−1 − 1 +
∑ℓ−1

i=1 (bi − bi−1 + 2ji−1).

Proof. Let w ∈ Vγ and ζ = (s1, . . . , sℓ−2). By the definition of the ebs we have
|w|a1 = b1 and |w|aℓ = bℓ−1 − 1. Let i ∈ [ℓ − 1]>1. By ι and ζ we know that we
have ji−1 join occurrences and si−1 separating occurrences of ai. The number
of satellites of ai can be calculated in the following way: at stage i there are
bi−1 − ji−1 + si−1 blocks marked considering only the previous blocks as well as
the join and separator occurrences of the letter ai. Since there must be bi blocks
in the end there have to be exactly bi − (bi−1 − ji−1 + si−1) satellites of the
letter ai. Thus we have bi − bi−1 + ji−1 − si−1 + ji−1 + si−1 = bi − bi−1 + 2jj−1

occurrences of ai. This concludes the proof. ⊓⊔

We finish this section with a result about neighbourless marking sequences
which will be of importance in the following sections.

Lemma 18. For a given ebs γ, if all occurrences of the letters are either join-
occurrences or singletons, |w| = |w′| and |w|x = |w′|x holds for all neighbourless
w,w′ ∈ Vγ and all x ∈ Σ.



Proof. Consider the valid extended blocksequence γ = (β, ι, ζ) with the block-
sequence β = (b1, . . . , bn), the sequence of joins ι = (j1, . . . , jn−2), and the
sequence of separators ζ = (s1, . . . , sn−2) for n ∈ N≥2. Since w,w′ ∈ Vγ they
have exactly b1 (the first element of the block sequence) occurrences of the first
letter and the same number of join-occurrences and singletons (explicitly given
by the number of separators and the next number of blocks) in every marking
stage that follows. Because there are no neighbours and the words are condensed
|w|x = |w′|x holds for all x ∈ Σ and therefore also |w| = |w′|. ⊓⊔

3 Neighbourless Marking Sequences and a Normal Form

As seen in the previous section, adding neighbours does not change the block-
sequence. For this reason, we restrict ourselves to words that are neighbourless
w.r.t. σΣ . In this section, we firstly present some results regarding neighbourless
marking sequences before we present a normal form for Vγ for a valid ebs γ.

Theorem 19. Given a word w ∈ Σn, a marking sequence σ = (y1, . . . , yℓ) is
neighbourless for w iff w[1] <σ w[2], w[n] <σ w[n−1], and for all i ∈ [⌊n2 ⌋−1]>1

we have w[2i] >σ w[2i + 1] and w[2i− 1] <σ w[2i].

Proof. Let first σ be a neighbourless marking sequence for w. If w[2] would be
marked before w[1] we had with w[1] a neighbouring occurrence. Analogously we
have w[n] <σ w[n−1]. Suppose that there exists an i ∈ [⌊n2 −1⌋]>1 with w[2i] <σ

w[2i+1] or w[2i−1] >σ w[2i] (equality is excluded since w is condensed). Choose
i minimal. We have to consider three cases.
case 1: w[2i] <σ w[2i + 1] and w[2i − 1] >σ w[2i].
In this case the letters w[2i − 3], w[2i − 2], w[2i − 1], w[2i] are of interest. We
know that w[2i−3] is marked before w[2i−2] by the minimality of i and w[2i] is
marked before w[2i− 1] which is marked before w[2i− 2] by the case-constraint.
This implies that either w[2i−2] is marked while w[2i−1] is unmarked and thus
w[2i− 2] is a neighbour or vice versa.
case 2: w[2i] <σ w[2i + 1] and w[2i − 1] <σ w[2i]
In this case w[2i] is marked when w[2i + 1] (w[2i − 1]) is already marked and
w[2i−1] (w[2i+1]) is still unmarked and thus w[2i] is a neighbouring occurrence.
case 3: w[2i] ≥σ w[2i + 1] and w[2i − 1] >σ w[2i]
This case is similar to case 2.
Since we get a contradiction in all cases, the ⇒-direction is proven.

Assume for the other direction that the constraints hold. Let j ∈ [n]. The
constraints ensure that w[j − 1] and w[j +1] are either both marked before w[j]
and thus w[j] is join occurrence or both are marked after w[j] and thus w[j] is
a separator. Hence, σ is neighbourless. ⊓⊔

Remark 20. By Theorem 19, only words of odd length can be neighbourless.

The following two results are of algorithmic nature We use the standard
computational model RAM with logarithmic word-size (see, e.g., [11]). Following



a standard assumption from stringology (see, e.g., [11]), if w is the input word for
our algorithms, we can assume that Σ = alph(w) = {1, 2, . . . , ℓ} with ℓ ≤ |w|.
Since we restrict ourselves to neighbourless words and marking sequences, we
show how to check in linear time whether a word is neighbourless and, if that is
the case, how the ebs can be computed within the same time complexity.

Proposition 21. We can check whether a condensed word w ∈ Σn is neigh-
bourless, and compute a neighbourless marking sequence, in O(n) time.

Proof. We can assume n = |w| is odd. Firstly we build a directed graph based
on Theorem 19. Define Gw = (Σ,E) with E ⊂ {(a, b)| a, b ∈ Σ} as follows.
Firstly, add the directed edges (w[1], w[2]) and (w[n], w[n − 1])to E. Then, for
all i ∈ [⌊n2 ⌋ − 1]>1 we add the edges (w[2i + 1], w[2i]) and (w[2i − 1], w[2i]).
Intuitively, we have an edge (a, b) if and only if we would need to have a <σ b

in any neighbourless marking sequence σ for w.
To find such a neighbourless marking sequence σ, it is enough to find the

linear ordering of the vertices of V such that for every directed edge (a, b) from
vertex a to vertex b, a comes before b in the respective ordering. Such a sequence
can be found using a standard topological sorting algorithm based on the depth-
first search (DFS). Such an algorithm produces successfully a linear ordering of
the vertices of Gw (and, as such, a neighbourless marking sequence σ for w) if
and only if Gw is a directed acyclic graph (DAG). The time complexity of this
algorithm is O(ℓ + |E|) = O(n). ⊓⊔

Proposition 22. Given a condensed word w ∈ Σn and a neighbourless marking
sequence σ for w, the ebs of w w.r.t σ can be computed in O(n) time.

Proof. Recall that, when discussing algorithms, we work under the assumption
that Σ = {1, 2, . . . , ℓ} for some ℓ ≤ |w|. Moreover we can assume w.l.o.g. σ = σΣ .
Otherwise, we could rename the letters of w by replacing a by σ−1(a) (σ is a
permutation of Σ, so we can invert it) for all a ∈ Σ. This means that if a is the
ith in the ordering σ, we replace a by i. In this way, we obtain a word w′ from
w, which is neighbourless w.r.t. σΣ , given that w was neighbourless w.r.t. σ.

So, in the following, w ∈ Σn is a neighbourless word w.r.t. σ = σΣ , and we
want to produce the ebs of w w.r.t. σ. Firstly, we construct a list-array Pos of
size ℓ, where Pos[a] stores the list of the positions (ordered from left to right)
where a occurs in w, for all a ∈ Σ. Further, we construct the arrays F and L of
size ℓ to store the first and last occurrence of every letter in w. More precisely,
F [a] = min{i ∈ [n] | w[i] = a} and L[a] = max{i ∈ [n] | w[i] = a}, for all a ∈ Σ.
Clearly, all these arrays can be computed by going once through w.

Now, we compute the arrays F ′ and L′, both of size ℓ − 1, where F ′[i] =
min(F [1 . . . (i − 1)]) and L′[i] = max(L[1 . . . (i − 1)]) for 2 ≤ i ≤ ℓ. The entry
F ′[i] represents the first position in w where a letter strictly smaller than i occurs,
while L′[i] is the last position where a letter strictly smaller than i occurs. Note
that all letters strictly smaller than i are marked before i in our σ. The arrays
F ′ and L′ can be computed by a simple dynamic programming approach in
linear time. For instance, F ′ is computed using the formula F [1] = n + 1 and



F ′[i] = min{F ′[i − 1], F [i− 1]} for i ≥ 2, and L′ is computed using the formula
L[1] = 0 and L′[i] = max{L′[i−1], L[i−1]} for i ≥ 2. Intuitively, before executing
the ith marking step in the sequence σ, F ′[i] is the leftmost marked symbol and
L′[i] the rightmost marked symbol.

Now, we start marking the positions of w following σ. We first mark the
positions in Pos[1], and count the number of blocks we obtain this way. Further,
we explain how we mark the positions in Pos[i], for i ≥ 2. We go through the
list Pos[i] left to right. If j is the current element (i.e., position of w), we check
whether w[j − 1] and w[j] are marked. If yes j is a join occurrence. If none of
w[j − 1] and w[j] are marked, and F ′[i] < j < L′[i] (meaning that w[j] occurs
between two already marked blocks), then the position j is a separator. Finally,
the position j is a satellite, otherwise (as σ is neighbourless).

The join sequence ι, the separator sequence ζ, as well as the number of
satellite occurrences of each letter, can be calculated directly from the procedure
described above. Everything takes clearly O(n) time.

The blocksequence β = (b1, · · · , bℓ−1, 1) can be calculated from the join
and separator sequences with the additional information about the satellite oc-
currences, similar to Theorem 17: b1 is the number of occurrences of 1 and
bi = bi−1 − ιi−1 + ζi−1 + ζ′i−1, where ζ′i−1 is the number of satellites of i. The
calculations can be done in linear time O(n + ℓ). This leads to a total time for
the algorithm in O(n). ⊓⊔

From now on, we will assume that w ∈ Σn, for n ∈ N, is neighbourless
w.r.t σΣ . For each valid ebs γ we define a normal form wγ ∈ Vγ according to
Theorem 14 such that wγ is neighbourless w.r.t. σΣ .

Definition 23. For a valid ebs γ = (β, ι, ζ) with β = (b1, . . . , bℓ), ι = (j1, . . . ,
jℓ−2), and ζ = (s1, . . . , sℓ−2) define wγ by (vi)i∈[ℓ] with vℓ = wγ with v1 = (a1•)b1

and for i ∈ [ℓ− 2]>1 define vi+1 as follows: firstly replace the first ji occurrences
of • by ai+1, then replace the next • by (•ai+1)

si•, denote the obtained word
by v and set vi+1 to v if bi+1 − (bi − ji + si) = 0 or to v(•ai+1)

bi+1−(bi−ji+si)

otherwise. For obtaining vℓ from vℓ−1 replace all occurrences of • by an.

Remark 24. For each word w ∈ Σ∗ which is neighbourless w.r.t σΣ we have a
corresponding valid ebs γw. Thus, one can define the word wγw

∈ Vγw
, as in

Definition 23. This word will be called the normal form of w w.r.t. the marking
sequence σΣ and the corresponding ebs γw.

In the following part, we present three rules with which the normal form of
a given w ∈ Σ∗ can be obtained.

Definition 25. Let γ be a valid ebs and i ∈ [ℓ]>1. Define the following rules:
Filling the leftmost gaps with joins R1: For w = x1ak1

uak2
vak3

x2 with
u, v ∈ Σ+, k1, k2, k3 < i and x1, x2 ∈ (Σ ∪ Σ)∗ define the application of R1 by
w′ = x1ak1

vak2
uak3

x2 (see Fig. 1).
All separators in one gap R2: Consider w = x1z1u

−→
ai

k1z2v
−→
ai

k2z3x2 with
x1, x2 ∈ (Σ ∪ Σ)∗, u, v ∈ {ai+1, . . . , an}+, z1, z3 ∈ {a1, . . . , ai−1}, z2 ∈ (Σ ∪



x1 ak1 u ak2 v ak3 x2

Fig. 1. Appl. of R1: dark is marked, light is unmarked, shaded contains both kinds.

Σ)+ with z2[1], z2[|z2|] ∈ Σ and with −→ai
k1 = ait1ait2 . . . aitk1

and −→ai
k2 =

ait
′
1ait

′
2 . . .ait

′
k2

. For an application of R2 chose m1,m2 ∈ N with m1+m2 = k1+
k2 and r1, . . . , rm1

∈ {t1, . . . , tk1
, t′1, . . . , t

′
k2
} different as well as r′1, . . . , r

′
m2

with
{r′1, . . . , r

′
m2
} = {t1, . . . , tk1

, t′1, . . . , t
′
k2
}\{r1, . . . , rm1

}. Set p = air1air2 . . . airm1

and p′ = air
′
1air

′
2 . . . air

′
m2

. Then the application of R2 to w results in w′ =
x1z1upz2vp

′z3x2 (see Fig. 2).
Moving satellites R3: For w = x1

−→
ai

rci
←−
ai

sx2 with r, s ∈ N0, x1, x2 ∈ (Σ∪Σ)∗

x1 z1 u −→
ai

k1 z2 v −→
ai

k2 z3 x2

Fig. 2. Appl. of R2: dark is marked, light is unmarked, shaded contains both kinds.

and the core ci at stage i, define the application of R3(a) by w′ = x1(
←−
ai

s)R−→ai rcix2

and of R3(b) by w′ = x1ci
←−
ai

s(−→ai r)Rx2 (see Fig. 3).

x1
−→
ai

r ci
←−
ai

s x2 x1 (←−ai
s)R −→

ai
r ci x2

Fig. 3. Appl. of R3: dark is marked, light is unmarked, shaded contains both kinds.

Theorem 26. For all w ∈ Σ∗ there exists a sequence (r1, . . . , rm) with ri ∈
{R1, R2, R3}, i ∈ [m], m ∈ N0 such that wγw

is obtained from w w.r.t. σΣ .

Proof. We construct the normal form inductively for the extended blocksequence
corresponding to w marked with σΣ . Perform the following four steps for all
i ∈ [ℓ]>1 (cf. Definition 8):

1. as long as wi can be written as x1ak1
uak2

aiak3
x2 with u 6= ai apply R1 (fill

the first gaps with join occurrences),
2. if wi can be written as x1ak1

uak2
vak3

x2 with v 6= ai, ai ∈ alph(v) and
u 6= ai, apply R1 (move one block containing a separator occurrence to the
gap immediately right to the gaps filled with joins),

3. if wi can be written as x1z1u
−→
ai

k1z2v
−→
ai

k2z3x2, apply R2 with m1 = k1 + k2
and m2 = 0 (move all separators into the same gap),



4. if wi can be written as x1
−→
ai

rci
←−
ai

sx2, apply R3(b) (move satellites to the
right).

We prove by induction on i ∈ [ℓ]≥2 that after each application of all four steps
the join occurrences of ai are in the leftmost gaps, in the following gap are the
separating occurrences of ai, and all satellite occurrences of ai are to the right
of all ai−1. Let i = 2. Then wi is of the form u1a1u2a1u3 . . . ub1a1ub1+1 with
ui ∈ (Σ\{a1}))

∗ for i ∈ [b1 + 1]. By γw we know that wi has j1 join occurrences
of a2 and thus there exists exactly j1 ui with ui = a2. Since we apply R1 as
long as there exists a join-occurrence that has a factor a1uka1 to the left in
wi, we obtain after the first step the word u1(a1a2)

j1a1xub1+1 with x = ε if
j1 = b1− 1 and x = ub1−j1−2a1ub1−j1−1 . . . ub1a1 otherwise. If s1 = 0 the second
step is skipped. Assume s1 > 0. Thus, there exist separating occurrences of a2
and hence at least one ui is of the form x1a2x2 with alph(x1x2) ⊆ Σ\{a1, a2}. If
this ui is not ub1−j1−2, R1 is applied such that ub1−j1−2 and ui switch positions.
This application results in the word

u1(a1a2)
j1
a1 · x1a2x2a1ub1−j1−1a1 . . . a1ub1−j1−2a1ub1−j1−1 . . . ub1a1 · ub1+1.

In the third step all other separating occurrences of a2 are moved by rule R2

into the same gap, i.e. if there exists another ui′ = x′
1a2x

′
2 with alph(x′

1, x
′
2) =

Σ\{a1, a2} the application of R2 leads to

u1(a1a2)
j1
a1 · x1a2x2a2x

′
2a1ub1−j1−1 . . . a1ub1−j1−2a1ub1−j1−1

. . . a1x
′
1a1 . . . ub1a1 · ub1+1

and finally to
u1(a1a2)

j1
a1x1
−→
a2

s1z1a1z2 . . . zℓa1zℓ+1

for appropriate zi ∈ (Σ\{a1, a2})
∗, i ∈ [ℓ], for some ℓ ∈ N, and zℓ+1 ∈ (Σ\{a1})

∗.
After this step all separating occurrences of a2 are between two occurrences of a1
and especially between those a1s such that all previous occurrences are directly
joined by one occurrence of a2. Thus only u1 and zℓ+1 may contain occurrences
of a2 (in the form of satellite occurrences). Set c2 as the factor starting at |u1|+1
and ending just before zℓ+1. If wi can be written as x1

−→
ai

rc1
←−
ai

sx2 as in rule R3

apply R3(b). After this step there is no occurrences of a2 before the first a1 and
all satellite occurrences of a2 are after the last a1.

Consider now the ith stage. Then we have a word of the form

u1B1u2B2u3 . . . ubi−1
Bbi−1

ubi−1+1

with Bi ∈ Σ
∗

and uj ∈ Σ∗ for i ∈ [bi−1] and j ∈ [bi−1 + 1]. Since there exist
ji−1 join occurrences of ai, there exist exactly ji−1 occurrences of uk which
are equal to ai. Applying ji−1 times rule R1 we swap these occurrences with
u2, . . . , uji−1+1. In the next step we swap a separating occurrences of ai with
uji−1+2 (if one exists). After these transformation we have with appropriate
z1, . . . , zℓ a word of the form

u1B1aiB2ai . . .aiBji−1+1z1Bji−1+2z2 . . . zℓ−1Bbi−1
zℓ



such that z1 contains all separating occurrences of yi. Now define ci as the factor
starting right after u1 and ending just before zℓ.

Notice that u1 and zℓ only may contain satellite occurrences of yi and ci does
not contain any. With R3(b) we move these occurrences all to the right into zℓ.
This proves that the application of the four steps results in a word where always
the first gaps are filled with the join-occurrences, followed by a gap containing
all separating occurrences, and that the satellite occurrences are all at the right
side of the core in each marking step.

Comparing this word with the definition of wγw
leads to the claim. ⊓⊔

Lemma 27. For a valid ebs γ and w ∈ Vγ applying any one of the rules R1,
R2, or R3 to w resulting in the word w′ we get w′ ∈ Vγ as well.

Proof. Let γ = (β, ι, ζ) be the valid extended blocksequence w.r.t. σΣ , blockse-
quence β = (b1, . . . bn), join sequence ι = (j1, . . . jn−2), and separator sequence
ζ = (s1, . . . sn−2). We divide the proof into three parts, one for each rule. Con-
sider the stage i ∈ [n]>1.
case R1: If we apply R1 to w resulting in w′, these words are of the form

w = x1ak1
uak2

vak3
x2 and w′ = x1ak1

vak2
uak3

x2

with u, v ∈ Σ+, k1, k2, k3 < i and x1, x2 ∈ (Σ ∪ Σ)∗. Since k1, k2, k3 < i

the letters ak1
, ak2

, and ak3
are all marked at stage i. Notice that x1ak1

, ak2

and ak3
x2 are factors of both w and w′. Thus, they have the same number of

blocks, join occurrences and separating occurrences in w and w′. Since u and
v are surrounded by ak1

, ak2
and ak3

which are all marked, there cannot be
any satellite occurrences of ai in u or v. If u is a join occurrence then it is of
the form u = ai. In this case it remains a join in between ak2

and ak3
x2. On

the other hand if u contains any number of separating occurrences it is of the
form u = u1aiu2ai . . . aium with u1, . . . , um ∈ Σ+. Specifically u1, um are not
marked in this step and not empty. Therefore, all separating occurrences of ai
in u remain to be ones in between ak2

and ak3
x2. The same holds analogously

for v. Therefore, the number of joins and separators is the same in w and w′ in
stage i of the marking. Since there are no neighbours or satellites in u and v the
number of blocks at stage i is the same as well.
case R2: If we apply R2 to w resulting in w′ these words are of the form

w = x1z1u
−→
ai

k1z2v
−→
ai

k2z3x2 and w′ = x1z1u
−→
ai

k1−→
ai

k2z2vp
′z3x2

with k1, k2 ∈ N. In order to show that w′ ∈ Vγw
holds, we will show that

the amounts of satellites, separators and joins for both words are the same and
therefore both words have the same extended blocksequence. The factors x1z1u,
z2v, and z3x2 are the same in both words. The letters that are adjacent to those
factors can differ in w and w′. However, the order in which a letter adjacent
to one these factors and the letter on the border of the respective factor are
marked, is the same in both words. So the factors x1z1u, z2v, and z3x2 behave
the same way in w and w′. This means only the factors containing −→ai can cause



any change in the extended blocksequence. Note that when marking w and w′,
before reaching stage i both words behave in the same way since −→ai k1 and −→ai k2

contain only letters that are marked in stage i or later. Satellites are not affected
by applying R2 since −→ai

k1 and −→ai
k2 lie within the core of w and satellites only

occur outside the core. In stage i, −→ai k1 and −→ai k2 contain only separators. By the
definition of −→ai and because k1 + k2 = m1 +m2 holds, the amount of separators
is the the same in w and w′. Thus, in −→ai k1 , −→ai k2 , p and p′ only ai is marked,
resulting in factors that are repetitions of ai (which is marked) followed by an
unmarked factor. These unmarked factors occur in different places in w and w′

but are encased by either ai, z2[1], or z3[1] which are all marked at this stage.
Hence, we can apply R2 and the number of joins and separators does not change.
This concludes the part for R2.
case R3: If we apply R3(a) (the case R3(b) works analogously) to w resulting
in w′ these words are of the form

w = x1
−→
ai

rci
←−
ai

sx2 and w′ = x1(
←−
ai

s)R−→ai
rcix2.

Notice that similar to R2 in −→ai r and ←−ai s letters are firstly marked in stage i. So
in w, ci and x2 are separated by an unmarked factor, whereas in w′ ci and x2

occur directly next to each other. Notice that x1[|x1|] and x2[1] are unmarked
(or empty) since otherwise the words would not be neighbourless. Since every
occurrence of ai in ←−ai s is neighboured only by unmarked letters in w and w′,
these occurrences are a single block in both words. The amount of blocks outside
←−
ai

s stays unchanged, so it holds that bi = b′i. After stage i the remaining letters in
←−
ai

s greater than ai are yet to be marked. Since←−ai
s is of the form x1aix2ai · · ·xsai

with xj ∈ {ai+1, · · · , al}+ and every such xj is encased by letters marked before
it in w (ai from the previous step or the last letter of the core) for j ∈ [s], the
same holds for (←−ai s)R in w′, by R3 these factors behave the same in both words.
Now we have to consider ci and x2 which become neighbours, when←−ai s is moved
by the application of R3. If x2 = ε we are done, otherwise the right neighbour
of ci is an unmarked letter in w, the left neighbour of x2 is marked. In w′ ci
and x2 occur directly next to each other so ci also has an unmarked neighbour
and x2 also has a marked left neighbour. This means that moving ←−ai

s does not
affect the number of joins, separators and satellites, so both words have the same
extended blocksequence. ⊓⊔

Corollary 28. For a given valid ebs, Vγ contains exactly one normal form and
all words having this normal form are in Vγ .

Proof. Let w,w′ ∈ Vγ . Then we have γw = γ = γw′ . By Theorem 26 we get that
w,w′ have the same normal form since the procedure only takes γ into account.
Let wγ be the normal form of γ. If there existed a v ∈ Σ∗ with normal form
wγ and v 6∈ Vγ then γ 6= γv. If the differences were in ι or ζ the normal form
of γv would have a different amount of joining blocks are a different amount of
separators, respectively. If the difference were in the block sequence the normal
form would have a different amounts of at least one letter. Thus, Vγ contains
exactly the words having the same normal form. ⊓⊔



For the ebs γ = ((4, 4, 1), (1), (1)), we have wγ = abacbcaca and Vγ =
{abacacbca, abacbcaca, acabacbca, acbcabaca, acacbcaba,acbcacaba} assum-
ing σΣ as marking sequence.

In the remaining part of this section we investigate the behaviour of a word
in comparison to its normal form regarding the locality of the words. For conve-
nience in the following proofs, we introduce the following notions.

Definition 29. Let n(w, S) denote the number of marked blocks in w if all let-
ters from S ⊆ Σ are marked and define for a given I ⊆ Σ the function o by
o(a, b, I) = 1 if a, b ∈ I and 0 otherwise.

Theorem 30. Let Ri(w) denote the application of Ri to w for i ∈ [3]. Then
we have that loc(R1(w)) differs from loc(w) by at most 2 and loc(R2(w)) and
loc(R3(w)) differ from loc(w) by at most 1.

Proof. We are going to prove the claim by comparing the locality resulting from
the canonical marking sequence with the locality resulting from an arbitrary
marking sequence σ = (y1, . . . , yℓ), i.e. the results for the optimal marking se-
quence may only be better. Consider stage i ∈ [ℓ] and set I = {y1, . . . , yi}.
case R1: Let w = x1ak1

uak2
x2ak3

vak4
x3 and R1(w) = x1ak1

vak2
x2yk3

uak4
x3 =:

w′. Set I = {y1, . . . , yi} for a fixed i ∈ [n]. Then after the ith stage of σ′ we have

n(w, I) = n(x1ak1
, I) + n(u, I) + n(ak2

x2ak3
, I) + n(v, I) + n(ak4

x3, I)

− o(ak1
, u[1], I)− o(u[|u|], ak2

, I)− o(ak3
, v[1], I)− o(v[|v|], ak4

, I)

and

n(w′, I) = n(x1ak1
, I) + n(v, I) + n(ak2

x2ak3
, I) + n(u, I) + n(ak4

x3, I)

− o(ak1
, v[1], I)− o(v[|v|], ak2

, I)− o(ak3
, u[1], I)− o(u[|u|], ak4

, I)

Thus we get

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(u[|u|], ak2

, I)− o(ak3
, v[1], I)− o(v[|v|], ak4

, I)

+ o(ak1
, v[1], I) + o(v[|v|], ak2

, I) + o(ak3
, u[1], I) + o(u[|u|], ak4

, I)|.

Set M1 = {v[1], u[1], u[|u|], v[|v|]}, M2 = {ak1
, ak2

ak3
, ak4
} and M = M1 ∪M2.

For getting the maximal difference in the locality change, we have to evaluate the
different possibilities for σ′, and thus the different possibilities for I. Consider
J = I ∩M . In the case |J | = 0 the difference is 0 since non of the summands
becomes 1. Analogously for |J | = 8 the difference is also 0 as all summands
become 1 and cancel out. For |J | = 1 also non of the summands can become 1,
so the difference is 0. For symmetry reasons the difference is also 0 for |J | = 7.
In the case |J | = 2 the difference can be either 0 or 1. If the two marked letters
occur in one summand, the difference is 1, since all other summands are 0. If the
marked letters do not occur in one summand together, all summands are 0 and
thus the difference is 0. By symmetry we get an analogous result for |J | = 6.



For |J | = 3 the difference can be 0 or 1. Similar to the case before, only one
positive and one negative summand can become 1 at most. If one negative and
one positive summand becomes 1 the difference is 0. If no summand becomes 1,
the difference is 0 as well. But if either one negative or one one positive summand
becomes 1 the difference is 1. Again, for |J | = 5 for symmetry reasons the same
results apply. The case |J | = 4 is the only one in which the difference can
become 0, 1 or 2. Four marked letters can lead to two positive and two negative
summands that become 1, respectively. The largest difference is obtained if either
two negative or two positive summands become 1 and respectively all positive
or negative summands are 0. This leads to a difference of 2. In all other cases
the difference is 0 or 1. This concludes the proof for R1.
case R2: Consider now w = x1z1u

−→
ai

k1z2x2z3v
−→
ai

k2z4x3 and R2(w) = x1z1u
−→
ai

k1

−→
ai

k2z2x2z3vz4x3 = w′. Then we get

n(w, I) = n(x1z1u, I) + n(−→ai
k1 , I) + n(z2x2z3v, I) + n(−→ai

k2 , I) + n(z4x3, I)

− o(u[|u|], ai, I)− o(−→ai
k1 [|−→ai

k1 |], z2, I)− o(v[|v|], ai, I)− o(−→ai
k2 [|−→ai

k2 |], z4, I)

and

n(w′, I) = n(x1z1, u, I) + n(−→ai
k1 , I) + n(−→ai

k2 , I) + n(z2x2z3v, I) + n(z4x3, I)

− o(u[|u|], ai, I)− o(−→ai
k1 |[−→ai

k1 |], ai, I)− o(−→ai
k2 [|−→ai

k2 |], z2, I)− o(v[|v|], z4, I).

Thus we get

|n(w′, I)− n(w, I)| =

| − o(−→ai
k1 |[−→ai

k1 |], ai, I)− o(−→ai
k2 [|−→ai

k2 |], z2, I)− o(v[|v|], z4, I)

+ o(−→ai
k1 [|−→ai

k1 |], z2, I) + o(v[|v|], ai, I) + o(−→ai
k2 [|−→ai

k2 |], z4, I)|.

Set M1 = {
−→
ai

k1 [|−→ai k1 |],−→ai k2 [|−→ai k2 |], v[|v|]}, M2 = {ai, z2, z4}, and M = M1∪M2.
Analogously to R1, we are distinguishing the possibilities for σ′. Consider J =
I ∩M . If |J | = 6, the difference is obviously 0. If |J | = 5 the difference is also
0 since each element from M occurs in exactly one positive and one negative
summand. By symmetry we get that the difference is 0 for |J | = 0 or |J | = 1.
If |J | = 4 and either M1 ∩ J or M2 ∩ J is empty then the difference is 0 since
two negative summands and two positive summands are non-zero. If J ∩M1 and
J ∩M2 are non-empty the difference is 1 since one positive (or negative resp.)
summand and two negative (or positive resp.) summands are affected. Again by
symmetry we get the analogous result for |J | = 4. If |J | = 3, the difference is 0.
This concludes the proof for R2.
case R3: W.l.o.g. we are only considering R3(b). Consider now w = x1

−→
ai

rci
←−
ai

sx2

according to R3. If r = 0 the word is not changed by the application and its
locality is not either. If on the other hand r > 0 two different cases have to
be distinguished in regards to the number of occurrences of satellites on the
right side of the core. Firstly, if s 6= 0, i.e. satellites occur on both sides, then



R3(w) = x1ci
←−
ai

s(−→ai
r)Rx2 =: w′ and we get with −→ai [1] =

←−
ai [|
←−
ai |] = ai

n(w, I) = n(x1, I) + n(−→ai
r, I) + n(ci

←−
ai

s, I) + n(x2, I)

− o(x1[|x1|], ai, I)− o(−→ai
r[|−→ai

r|], ci[1], I)− o(ai, x2[1], I)

and

n(w′, I) = n(x1, I) + n(ci
←−
ai

s, I) + n((−→ai
r)R, I) + n(x2, I)

− o(x1[|x1|], ci[1], I)− o(ai, (
−→
ai

r)R[1], I)− o((−→ai
r)R[|(−→ai

r)R|], x2[1], I).

By n(−→ai r, I) = n((−→ai r)R, I) and (−→ai r)R[|(
−→
ai

r)R|] = ai we get

|n(w′, I)− n(w, I)| = | − o(x1[|x1|], ci[1], I)− o(ai, (
−→
ai

r)R[1], I)

+ o(x1[|x1|], ai, I) + o(−→ai
r[|−→ai

r|], ci[1], I)|,

where (−→ai r)R[1] =
−→
ai

r[|−→ai r|].
Set M1 = {x1[|x1|], (

−→
ai

r)R[1]}, M2 = {ci[1], ai}, and M = M1∪M2. Similarly to
R1 and R2, we are distinguishing the possibilities for σ′. Consider J = I ∩M .
If |J | = 4, the difference is obviously 0. If |J | = 3 the difference is 1 since each
element from M occurs in exactly one positive and one negative summand. By
symmetry we get that the difference is 0 for |J | = 0 or |J | = 1. If |J | = 2 and
either M1 ∩ J or M2 ∩ J is empty then the difference is 0 since two negative
summands and two positive summands are non-zero. If J ∩M1 and J ∩M2 are
non-empty the difference is 1 since exactly one positive or negative summand is
affected.

Secondly, if there are no satellites on the right side of the core (s = 0) then
w = x1

−→
ai

rcix2 and R3(w) = x1ci(
−→
ai

r)Rx2 =: w′ according to R3.
Then we get with −→ai r[1] = (−→ai r)R[|(

−→
ai

r)R|] = ai

n(w, I) = n(x1, I) + n(−→ai
r, I) + n(ci, I) + n(x2, I)

− o(x1[|x1|], ai, I)− o(−→ai
r[|−→ai

r|], ci[1], I)− o(ci[|ci|], x2[1], I)

and

n(w′, I) = n(x1, I) + n(ci, I) + n((−→ai
r)R, I) + n(x2, I)

− o(x1[|x1|], ci[1], I)− o(ci[|ci|], (
−→
ai

r)R[1], I)− o(ai, x2[1], I).

By n(−→ai r, I) = n((−→ai r)R, I) we get

|n(w′, I)−n(w, I)| = |−o(x1[|x1|], ci[1], I)−o(ci[|ci|], (
−→
ai

r)R[1], I)−o(ai, x2[1], I)

+ o(x1[|x1|], ai, I) + o(−→ai
r[|−→ai

r|], ci[1], I) + o(ci[|ci|], x2[1], I)|.

Consider M1 = {x1[|x1|],
−→
ai

r[|−→ai r|], x2[1]}, M2 = {ci[1], ci[|ci|], ai}, and M =
M1∪M2. Then we get analogously to case R2 a difference of at most 1. The proof
for the application of R3(a) follows symmetrically. Thus, the absolute value of
difference in locality for w and w′ is at most 1 for the case R3. ⊓⊔



For transforming a neighbourless word w ∈ Σ∗ into wγ given the ebs γ w.r.t.
σΣ , R1 needs to be applied ≤ ji + 1 times (moving j1 joins and one separator),
R2 ≤ si times and R3 once (moving all satellites to the right side of the core).

Corollary 31. For w ∈ Σ∗ and the ebs γw induced by σΣ, we have loc(w) ≤
loc(wγw

) +
∑

i∈[ℓ](2ji + si) + ℓ.

Proof. In the worst case all letters are different and get an increase of 2 for
each application of R1 as well as an increase of 1 for each application of R2.
Interestingly, the locality does not increase with the number of satellites but
increases by 1 at most for each letter.

Since we only consider neighbourless words at any stage 1 < i < l in the
marking process wi is of the form −→al kl · · · −→ai kici

←−
ai

k′

i · · ·←−al k
′

l with kj , k
′
j ∈ N0, i ≤

j ≤ l according to the notation in Remark 10 and [4]. To bring w into normal
form we apply R3(b) once in every such stage, moving the factor −→ai ki which
contains all left satellites of ai to the right side of the core. The order in which
these possibly different −→ai occur there is not of importance since they are of the
form aix with x ∈ {ai+1, · · · , aℓ}+ and all letters of x are either join or singleton
occurrences greater than ai and are moved with R1 or R2 in the remaining
marking steps, if necessary. For both a1 and al there is no application of R3

needed since no occurrence of a1 has to be moved and there are no satellites for
al (which are all joining occurrences). ⊓⊔

In this section, we have proven that for neighbourless words (w.r.t. σΣ) we
can always find a normal form and we showed how the locality of the word
itself and its normal form differ in the worst case. This upper bound proven in
Corollary 31 can only be reached if at any stage the critical letters, the letters
adjacent to the factors moved by the rules, are all different. Since, for instance,
if the rules are applied to a2, all critical letters have to be a1, the upper bound is
not tight. The following lemma shows how the locality changes if critical letters
are equal.

Lemma 32. Let w ∈ Σ∗. Regarding R1 we have that the locality does not change
if the critical letters are identical and it changes by at most 1 if three critical
letters are equal and the fourth is different or if a1 = a3 or a2 = a4. Regarding
R2 the results are similar: if the critical letters −→ai k1 [|−→ai k1 |], z2, z4, and v[|v|] are
all equal or if −→ai

k1 [|−→ai
k1 |] and z2 = z4 the locality does not change. Finally

regarding R3(b) the locality does not change if both x1[|x1|] = x2[1] and ci[1] =
ci
←−
ai

s[|ci
←−
ai

s|] (including the case x1 = x2 = ε).

Proof. Consider firstly R1. For ak1
= ak2

= ak3
= ak4

we have

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(u[|u|], ak1

, I)− o(ak1
, v[1], I)− o(v[|v|], ak1

, I)

+ o(ak1
, v[1], I) + o(v[|v|], ak1

, I) + o(ak1
, u[1], I) + o(u[|u|], ak1

, I)| = 0.



If we have ak1
= ak3

, ak2
= ak4

, we also get

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(u[|u|], ak2

, I)− o(ak1
, v[1], I)− o(v[|v|], ak2

, I)

+ o(ak1
, v[1], I) + o(v[|v|], ak2

, I) + o(ak1
, u[1], I) + o(u[|u|], ak2

, I)| = 0.

Consider now ak2
= ak3

= ak4
(the other cases where three critical letters are

equal but not the fourth are analogous). Then we get

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(ak2

, v[1], I) + o(ak1
, v[1], I) + o(ak2

, u[1], I)| ≤ 1.

Moreover we have for a1 = a3 (a2 = a4 is analogous)

|n(w′, I)− n(w, I)|

= | − o(u[|u|], ak2
, I)− o(v[|v|], ak4

, I) + o(v[|v|], ak2
, I) + o(u[|u|], ak4

, I)| ≤ 1.

For ak1
= ak2

, ak3
= ak4

we have

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(u[|u|], ak1

, I)− o(ak3
, v[1], I)− o(v[|v|], ak3

, I)

+ o(ak1
, v[1], I) + o(v[|v|], ak1

, I) + o(ak3
, u[1], I) + o(u[|u|], ak3

, I)| ≤ 2.

For ak1
= ak4

, ak2
= ak3

we have

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(u[|u|], ak2

, I)− o(ak2
, v[1], I)− o(v[|v|], ak1

, I)

+ o(ak1
, v[1], I) + o(v[|v|], ak2

, I) + o(ak2
, u[1], I) + o(u[|u|], ak1

, I)| ≤ 2.

For ak1
= ak2

we have

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(u[|u|], ak1

, I)− o(ak3
, v[1], I)− o(v[|v|], ak4

, I)

+ o(ak1
, v[1], I) + o(v[|v|], ak1

, I) + o(ak3
, u[1], I) + o(u[|u|], ak4

, I)| ≤ 2.

For ak1
= ak4

we have

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(u[|u|], ak2

, I)− o(ak3
, v[1], I)− o(v[|v|], ak1

, I)

+ o(ak1
, v[1], I) + o(v[|v|], ak2

, I) + o(ak3
, u[1], I) + o(u[|u|], ak1

, I)| ≤ 2.

For ak2
= ak3

we have

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(u[|u|], ak2

, I)− o(ak2
, v[1], I)− o(v[|v|], ak4

, I)

+ o(ak1
, v[1], I) + o(v[|v|], ak2

, I) + o(ak2
, u[1], I) + o(u[|u|], ak4

, I)| ≤ 2.



For ak3
= ak4

we have as a last case for R1

|n(w′, I)− n(w, I)|

= | − o(ak1
, u[1], I)− o(u[|u|], ak2

, I)− o(ak3
, v[1], I)− o(v[|v|], ak3

, I)

+ o(ak1
, v[1], I) + o(v[|v|], ak2

, I) + o(ak3
, u[1], I) + o(u[|u|], ak3

, I)| ≤ 2.

This proves the claim for R1. Consider now R2. If −→ai k1 [|−→ai k1 |] = z2 = z4 = v[|v|]
we get

|n(w′, I)− n(w, I)|

= | − o(z2, ai, I)− o(−→ai
k2 [|−→ai

k2 |], z2, I)− o(z2, z2, I)

+ o(z2, z2, I) + o(z2, ai, I) + o(−→ai
k2 [|−→ai

k2 |], z2, I)| = 0.

If −→ai k1 [|−→ai k1 |] = v[|v|], z2 = z4 we get

|n(w′, I)− n(w, I)| = | − o(v|[v|], ai, I)− o(−→ai
k2 [|−→ai

k2 |], z2, I)− o(v[|v|], z2, I)

+ o(v[|v|], z2, I) + o(v[|v|], ai, I) + o(−→ai
k2 [|−→ai

k2 |], z2, I)| = 0.

In the remaining cases the locality may change by at most 1. If z2 = z4 = v[|v|]
(the other cases if three critical letters are equal but not the fourth are analogous)
we get

|n(w′, I)− n(w, I)| = | − o(−→ai
k1 [|−→ai

k1 |], ai, I)− o(z2, z2, I)

+ o(−→ai
k1 [|−→ai

k1 |], z2, I) + o(z2, ai, I)| ≤ 1.

If −→ai k1 [|−→ai k1 |] = z2, z4 = v[|v|] we get

|n(w′, I)− n(w, I)|

= | − o(−→ai
k1 [|−→ai

k1 |], ai, I)− o(−→ai
k2 [|−→ai

k2 |],−→ai
k1 [|−→ai

k1 |], I)− o(z4, z4, I)

+ o(−→ai
k1 [|−→ai

k1 |],−→ai
k1 [|−→ai

k1 |], I) + o(z4, ai, I) + o(−→ai
k2 [|−→ai

k2 |], z4, I)| ≤ 1.

If −→ai k1 [|−→ai k1 |] = z4, z2 = v[|v|] we get

|n(w′, I)− n(w, I)|

= | − o(−→ai
k1 [|−→ai

k1 |], ai, I)− o(−→ai
k2 [|−→ai

k2 |], z2, I)

+ o(z2, ai, I) + o(−→ai
k2 [|−→ai

k2 |],−→ai
k1 [|−→ai

k1 |], I)| ≤ 1.

If −→ai k1 [|−→ai k1 |] = z2 we get

|n(w′, I)− n(w, I)|

= | − o(−→ai
k1 [|−→ai

k1 |], ai, I)− o(−→ai
k2 [|−→ai

k2 |],−→ai
k1 [|−→ai

k1 |], I)− o(v[|v|], z4, I)

+ o(−→ai
k1 [|−→ai

k1 |],−→ai
k1 [|−→ai

k1 |], I) + o(v[|v|], ai, I) + o(−→ai
k2 [|−→ai

k2 |], z4, I)| ≤ 1.



If −→ai
k1 [|−→ai

k1 |] = z4 we get

|n(w′, I)− n(w, I)|

= | − o(−→ai
k1 [|−→ai

k1 |], ai, I)− o(−→ai
k2 [|−→ai

k2 |], z2, I)− o(v[|v|],−→ai
k1 [|−→ai

k1 |], I)

+ o(−→ai
k1 [|−→ai

k1 |], z2, I) + o(v[|v|], ai, I) + o(−→ai
k2 [|−→ai

k2 |],−→ai
k1 [|−→ai

k1 |], I)| ≤ 1.

If −→ai k1 [|−→ai k1 |] = v[|v|] w get

|n(w′, I)− n(w, I)| = | − o(−→ai
k2 [|−→ai

k2 |], z2, I)− o(−→ai
k1 [|−→ai

k1 |], z4, I)

+ o(−→ai
k1 [|−→ai

k1 |], z2, I) + o(−→ai
k2 [|−→ai

k2 |], z4, I)| ≤ 1,

If z2 = z4 we get

|n(w′, I)− n(w, I)| = | − o(−→ai
k1 [|−→ai

k1 |], ai, I)− o(v[|v|], z2, I)

+ o(−→ai
k1 [|−→ai

k1 |], z2, I) + o(v[|v|], ai, I)| ≤ 1.

If z2 = v[|v|] we get

|n(w′, I)−n(w, I)| = |−o(−→ai
k1 [|−→ai

k1 |], ai, I)−o(
−→
ai

k2 [|−→ai
k2 |], z2, I)−o(z2, z4, I)

+ o(−→ai
k1 [|−→ai

k1 |], z2, I) + o(z2, ai, I) + o(−→ai
k2 [|−→ai

k2 |], z4, I)| ≤ 1.

Finally for R2 if z4 = v[|v|] we get

|n(w′, I)−n(w, I)| = |−o(−→ai
k1 [|−→ai

k1 |], ai, I)−o(
−→
ai

k2 [|−→ai
k2 |], z2, I)−o(z4, z4, I)

+ o(−→ai
k1 [|−→ai

k1 |], z2, I) + o(z4, ai, I) + o(−→ai
k2 [|−→ai

k2 |], z4, I)| ≤ 1.

This concludes the proof for R2. Considering R3(b) there are less options
for equality of the critical letters x1[|x1|], ci[1], ci

←−
ai

s[|ci
←−
ai

s|] and x2[1]. By the
construction of the neighbourless word wi to which R3 is applied we know
that wi = x1

−→
ai

rci
←−
ai

sx2 with r > 0 and ci the core of wi. According to R3

and the definition of the core ci, we know that x1[|x1|], x2[1] >σΣ
ai ≥σΣ

ci[1], ci
←−
ai

s[|ci
←−
ai

s|] and specifically x1[|x1|], x2[1] 6= ci[1], ci
←−
ai

s[|ci
←−
ai

s|] and the
factors ci[1] and ci

←−
ai

s[|ci
←−
ai

s|] are not the empty word, whereas x1 and x2 might
be. Consider first x1 and x2 not empty.

If x1[|x1|] = x2[1] and ci[1] = ci
←−
ai

s[|ci
←−
ai

s|] we get

|n(w′, I)− n(w, I)| =

| − o(x1[|x1|], ci[1], I)− o(ci[1], (
−→
ai

r)R[1], I)− o(ai, x1[|x1|], I)

+ o(x1[|x1|], ai, I) + o(−→ai
r[|−→ai

r|], ci[1], I) + o(ci[1], x1[|x1|], I)| = 0.

If x1[|x1|] = x2[1] and ci[1] 6= ci
←−
ai

s[|ci
←−
ai

s|] (the case for x1[|x1|] 6= x2[1] and
ci[1] = ci

←−
ai

s[|ci
←−
ai

s|] follows analogously) we get

|n(w′, I)− n(w, I)| =

| − o(x1[|x1|], ci[1], I)− o(ci
←−
ai

s[|ci
←−
ai

s|], (−→ai
r)R[1], I)− o(ai, x1[|x1|], I)

+ o(x1[|x1|], ai, I) + o(−→ai
r[|−→ai

r|], ci[1], I) + o(ci
←−
ai

s[|ci
←−
ai

s|], x2[1], I)| ≤ 1.



If x1[|x1|] 6= x2[1] and ci[1] 6= ci
←−
ai

s[|ci
←−
ai

s|] we get

|n(w′, I)− n(w, I)| =

| − o(x1[|x1|], ci[1], I)− o(ci
←−
ai

s[|ci
←−
ai

s|], ai, I)− o(ai, x2[1], I)

+ o(x1[|x1|], ai, I) + o(−→ai
r[|−→ai

r|], ci[1], I) + o(ci
←−
ai

s[|ci
←−
ai

s|], x2[1], I)| ≤ 1.

If on the other hand x1 or x2 are empty there are less critical letters. The
previously given calculations include these cases since the summands in which
either x1[|x1|] or x2[1] appears are 0 by definition of o and do not influence the
inequalities. ⊓⊔

Lemma 32 shows two peculiarities: the smaller a letter is w.r.t. the given
order the less cases exist in which the locality is changed maximally; words can
be categorised w.r.t. their joins and separators - the less of these occurrences
appear between different critical letters the smaller is the difference between the
locality of the normal form and the word itself. Moreover, the worst case does
not incorporate that the worst case for one application of one rule may be the
best case for another one such that the increase and decrease cancel each other
out. We leave this investigation for general alphabets as an open problem. In the
following section, we study the behaviour for alphabets of size up to 3.

4 The Case |Σ| ≤ 3

In this section, we are using a, b, and c for the alphabet for better readability.
For unary alphabets we have exactly one word containing of a single letter since
we only consider condensed words. The binary case Σ = {a, b} can also shortly
be explained: blocksequences are of the form (b1, 1). Again, since the words are
condensed and neighbourless, each word has to be an alternation of a and b

and assuming σΣ the word starts and ends with a. Thus we have b1 occurrences
of a and b1 − 1 join occurrences of b. This leads immediately to the fact that
the only other marking sequence is better (and thus optimal) since we obtain
the blocksequence (b1 − 1, 1). In the case Σ = {a, b, c} ebs are of the form
γ = ((b1, b2, 1), j1, s1) (omitting some brackets for better readability) implying
wγ = (ab)j1a(cb)s1(ca)b1−j1−1(cb)b2−b1−s1+j1 . Firstly, we show how the locality
of w and wγ differ. Notice that in the case |Σ| = 3 only occurrences of b may be
join- or separating occurrences and all occurrences of c are joins.

Proposition 33. Let w ∈ Σ∗ and γ = ((b1, b2, 1), j1, s1) the ebs while marking
with σΣ . Then we have locσΣ

(w) = locσΣ
(wγ).

Proof. Given j1 we know that rule R1 has to be applied at most j1 + 1 times,
namely j1 for bringing the join occurrences at the correct position and 1 for
bringing one gap with separating occurrences of b at the correct position (in the
case that some are already in the correct position, the number of applications
decreases). Moreover, we may assume for the input of R1: akj

= a for j ∈ [4],



u[1] = u[|u|] = c since u needs to be an a-gap which does not contain a join-
occurrence of b (otherwise we do not apply R1), and v[1] = v[|v|] = b. Thus, we
get for I ⊆ Σ∗

|n(w′, I)− n(w, I)| = | − o(a, c, I)− o(c, a, I)− o(a, b, I)− o(b, a, I)

+ o(a, b, I) + o(b, a, I) + o(a, c, I) + o(c, a, I)| = 0,

i.e. moving the join occurrences to the correct positions does not change the
locality at all. In the next step, we have to move one separating gap to the left,
i.e. we have to exchange a join occurrence of c with an occurrence of the form
(cb)ℓc. In this case we have again akj

= a, u[1] = u[|u|] = c and v[1] = v[|v|] = c

resulting in

|n(w′, I)− n(w, I)| = | − o(a, c, I)− o(c, a, I)− o(a, c, I)− o(c, a, I)

+ o(a, c, I) + o(c, a, I) + o(a, c, I) + o(c, a, I)| = 0

and hence, applying R1 never changes the locality. In the next step we are going
to move all separating occurrences into the same gap (the one where we just
put one such block by R1). Here we know −→ai kj [|−→ai kj |] = c for j ∈ [2], ai = b,
v[|v|] = c, and zj = a for j ∈ [4] and we get

|n(w′, I)− n(w, I)| = | − o(c, b, I)− o(c, a, I)− o(c, a, I)

+ o(c, a, I) + o(c, b, I) + o(c, a, I)| = 0.

Hence, the application of R2 does not change the locality either. Finally, we look
at the application of R3 and notice←−aiR[|

←−
ai

R|] = c, ai = b, ci[|ci|] = a, x2[1] = c,
←−
ai [1] = c and obtain

|n(w′, I) − n(w, I)| = | − o(c, b, I) − o(a, c, I) + o(a, c, I) + o(b, c, I)| = 0

which leads to locσΣ
(w) = locσΣ

(wγ). ⊓⊔

Thus, on a ternary alphabet we may assume the normal form without any re-
striction w.r.t. locσΣ

. The following proposition determines the optimal marking
sequence for the normal form just by the ebs.

Theorem 34. Given a valid ebs γ = ((b1, b2, 1), j1, s1) and wγ w.r.t. σΣ the
optimal marking sequence is given by
- (b, c, a) if 2b1 ≥ 2j1 + b2 and b2 − 1 ≥ b1 or 2b1 ≤ 2j1 + b2 and b1 ≥ 2j1 + 1,
- (c, a, b) if b1 ≤ 2j1 + 1 and 2b1 ≥ 2j1 + b2 or b1 ≥ 2j1 + 1 and b1 ≥ b2 − 1,
- (c, b, a) if b1 ≥ b2 − 1 and 2b1 ≤ 2j1 + b2 or 2b1 ≥ 2j1 + b2 and b1 ≤ 2j1 + 1,
- (a, b, c) otherwise.

Proof. Notice that for determining the locality of a word, it suffices to calcu-
late all blocksequences of the possible marking sequence; the extended block-
sequence is not of interest. We will here only calculate the blocksequence for
one marking sequence in detail since the calculation is similar in all cases (the



results are depicted in Table 1. Set for convenience u1 = (ab)j1a, u2 = (cb)s1 ,
u3 = (ca)b1−j1−1, and u4 = (cb)b2−b1−s1+j1 . Consider the marking sequence
(b, c, a). Marking b leads to j1 marked blocks in u1 (the last letter is unmarked),
s1 marked blocks in u2 (the last letter is marked), no marked block in u3, and
b2− b1− s1 + j1 marked blocks in u4. This leads to j1 + s1 + b2− b1 − s1 + j1 =
2j1 + b2 − b1 marked blocks. Now marking c leads to j1 marked blocks in u1

(the last letter is still unmarked), u2 is one marked block, b1 − j1 − 1 marked
blocks in u3 (the first letter is marked, the last letter is unmarked), and u4 is
one marked block. Thus we get j1 + 1 + b1 − j1 − 2 + 1 = b1.

marking sequence blocks after 1st marked letter blocks after 2nd marked letter

σ1 = (a, b, c) b1 b2
σ2 = (a, c, b) b1 2j1 + b2 − b1
σ3 = (b, a, c) 2j1 + b2 − b1 b2

σ4 = (b, c, a) 2j1 + b2 − b1 b1
σ5 = (c, a, b) b2 − 1 2j1 + b2 − b1
σ6 = (c, b, a) b2 − 1 b1

Table 1. Number of blocks after marking the first and after marking the second letter
for each marking sequence.

This information can now be used to derive which sequences are optimal.
Recall that a marking sequence is optimal if there is no other marking sequence
that leads to a smaller locality. We know that loc(a,b,c) = min{b1, b2} and thus
any other marking sequence is only better if it needs at most loc(a,b) blocks
while marking. Notice from Table 1 that σ2 and σ4 result in the same locality -
therefore we are only considering σ2.
case 1: b1 ≤ b2
In this case σ2, σ3 and σ5 are better than σ1 if 2j1 + b2 − b1 < b2 holds. This is
equivalent to 2j1 < b1; σ6 is in any case better than σ1. If both conditions are
true, σ6 is worse than the other ones since the opposite led to b2−1 < 2j1+b2−b1
which is a contradiction to b1 < 2j1.
case 2: b1 > b2
In this case σ2, σ3 and σ5 are better than σ1 if 2j1 + b2 − b1 < b1 holds. This is
equivalent to 2j1 + b2 < 2b1. The last marking sequence σ6 is never better than
σ1. ⊓⊔

Thus, in the ternary case we are able to determine the optimal marking se-
quence for a neighbourless word with a constant number of arithmetic operations
and comparisons if the extended marking sequence is given; notice that the nor-
mal form does not have to be computed since only the information from the
extended blocksequence is needed.



5 Conclusions

In this paper, we investigated a new point of view regarding the notion of k-
locality. While previous works were focussed on the locality of one single word
and the connection to other domains (especially pattern matching or graph the-
ory), we introduced the notion of blocksequence for grouping words and finding
similarities of these words. We noticed that just a blocksequence does not pro-
vide enough information for a reasonable characterisation, since too many words
with different locality fall into the same class. Thus, we strengthened this no-
tion, and introduced extended blocksequences. These sequences not only count
the number of marked blocks, in each step of a marking sequence, but also pro-
vide information about the roles of single letters: neighbours, joins, separators,
and satellites. Further, we focused our analysis on neighbourless words. In that
case, we were able to define a normal form for each class, and compute it in linear
time. We have also shown an upper bound on the difference between the locality
of a word and that of its normal form. It remains open to determine the exact
difference between these two for a specific word over an alphabet with at least
four letters. We conjecture that our upper bound is actually not tight, since the
worst case for one of the applied rules can be cancelled out with the application
of the next rule. Surprisingly for us, a computer programme showed that the
locality of a word and that of its normal form, over a six-letter alphabet, differ
by at most seven, independent of the number of satellites, joins, and separators.
For a three letter alphabet we gave a full characterisation including the optimal
marking sequence of a word, as determined by the extended blocksequence.

In this work, we merely started the study of this new perspective on the
locality of words. Further problems, such as the computation of the normal
form’s locality and a deeper understanding of the locality changes between a
word and its normal form, are left as future work.
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