Skip to main content

Research on Dynamic Integration of Multi-objective Data in UI Color Interface

  • Conference paper
  • First Online:
Advanced Hybrid Information Processing (ADHIP 2020)

Abstract

On the traditional method of dynamic integration of multi-objective data in UI color interface, because of the single integration algorithm, it is easy to lose the target data when there is too much target data. Therefore, based on the use characteristics of UI color interface, a new integration method of multi-objective data is proposed. This method obtains the sampling target through deep web data, detects and tracks the target image, optimizes according to the multi-objective integration, realizes the optimal path multi-objective equilibrium integration. Experimental results: the proposed detection method is fully in place in data integration, the occupancy rate of arm is 0%, the load line of DSP is 20%, the system maintains reliable real-time, and achieves the ideal state of UI color interface operation. However, the traditional data integration method of SLR is not in place; it can be seen that the traditional integration method is not suitable for the requirements of UI color interface with large target data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng, J., Dou, L., Xin, B.: Multi-objective cooperative salvo attack against group target. J. Syst. Sci. Complex. 31(1), 244–261 (2018)

    Article  Google Scholar 

  2. Zhang, X., Tan, Y., Yang, Z.: Resource allocation optimization of equipment development task based on MOPSO algorithm. J. Syst. Eng. Electron. 30(6), 1132–1143 (2019)

    Google Scholar 

  3. Gao, K., Cao, Z., Zhang, L., et al.: A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA J. Automat. Sin. 6(4), 904–916 (2019)

    Article  Google Scholar 

  4. Cheng, S., Lei, X., Lu, H., et al.: Generalized pigeon-inspired optimization algorithms. Sci. China (Inf. Sci.) 62(7), 120–130 (2019)

    Google Scholar 

  5. Hu, Y., Wang, J., Liang, J., et al.: A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm. Sci. China (Inf. Sci.), 62(7), 73–89 (2019)

    Google Scholar 

  6. Yan, L., Qu, B., Zhu, Y., et al.: Dynamic economic emission dispatch based on multi-objective pigeon-inspired optimization with double disturbance. Sci. China (Inf. Sci.) 62(7), 108–119 (2019)

    MathSciNet  Google Scholar 

  7. Yang, Yu., Gao, S., Wang, Y., et al.: Global optimum-based search differential evolution. IEEE/CAA J. Autom. Sin. 6(2), 379–394 (2019)

    Article  Google Scholar 

  8. Shuai, L., Gelan, Y.: Advanced Hybrid Information Processing, pp. 1–594. Springer, USA. https://doi.org/10.1007/978-3-030-36402-1

  9. Liu, A., Deng, X., Ren, L., et al.: An inverse power generation mechanism based fruit fly algorithm for function optimization. J. Syst. Sci. Complex. 32(2), 634–656 (2019)

    Article  Google Scholar 

  10. Sun, J., Ling, B.: Software module clustering algorithm using probability selection. Wuhan Univ. J. Nat. Sci. 23(2), 93–102 (2018)

    Article  Google Scholar 

  11. Gong, D.W., Sun, J., Miao, Z.: A set-based genetic algorithm for interval many-objective optimization problems. IEEE Trans. Evol. Comput. 22(99), 47–60 (2018)

    Article  Google Scholar 

  12. Bradford, E., Schweidtmann, A.M., Lapkin, A.: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm. J. Glob. Optim. 71(2), 1–33 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Liu, S., Bai, W., Liu, G., et al.: Parallel fractal compression method for big video data. Complexity 2018, 2016976 (2018). https://doi.org/10.1155/2018/2016976

    Article  MATH  Google Scholar 

  14. Ben Elghali, S., Outbib, R., Benbouzid, M.: Selecting and optimal sizing of hybridized energy storage systems for tidal energy integration into power grid. J. Mod. Pow. Syst. Clean Energy 7(1), 113–122 (2019)

    Google Scholar 

  15. Liu, S., Lu, M., Li, H., et al.: Prediction of gene expression patterns with generalized linear regression model. Front. Genet. 10, 120 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Lw., Zhai, F. (2021). Research on Dynamic Integration of Multi-objective Data in UI Color Interface. In: Liu, S., Xia, L. (eds) Advanced Hybrid Information Processing. ADHIP 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-030-67874-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67874-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67873-9

  • Online ISBN: 978-3-030-67874-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics