Skip to main content

Intelligent Optimization Design of Reactive Voltage Sensitivity Parameters for Large-Scale Distributed Wind Farms

  • Conference paper
  • First Online:
Advanced Hybrid Information Processing (ADHIP 2020)

Abstract

Aiming at the problem that the reactive voltage sensitivity parameter of large-scale distributed wind farm is low overall, the parameter intelligent optimization design of the reactive voltage sensitivity of large-scale distributed wind farm is carried out. Firstly, design a wind farm equivalent circuit and optimize the parameters of the traditional reactive voltage sensitivity optimization model, and set the objective function to adjust the model weight coefficient. Then the bat algorithm is improved according to the parameter intelligent optimization model, and the reactive volt sensitivity parameter of the scaled distributed wind farm is intelligently optimized according to the improved bat algorithm. Finally, a simulation experiment is carried out to test the performance of intelligent optimization of reactive voltage sensitivity parameters of large-scale distributed wind farms. It is concluded that the reactive power sensitivity parameter of the large-scale distributed wind farm reactive voltage sensitivity parameter optimization is significantly higher than that of the reactive voltage sensitivity parameter optimized by the traditional reactive voltage sensitivity parameter optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dan, W., Jingjing, T., Wenxia, L., et al.: Coordination reactive power optimal dispatching method for decentralized wind farms and regional power grids considering uncertainty. Modern Electric Power 33(34), 130–137 (2016)

    Google Scholar 

  2. Chen, D., Wang, C., Li, C.K., et al.: Study on the influence of decentralized wind power access on reactive power and voltage characteristics of 110 kV regional power grid. Rural Water Resour. Hydropower China 22(23), 188–191 (2015)

    Google Scholar 

  3. Yang, J., Cui, J., Xing, Z., et al.: Decentralized reactive power control strategy for wind farms considering wind power prediction. Power Syst. Autom. 33(35), 1118–1115 (2015)

    Google Scholar 

  4. Junhong, W., Yanjun, Z., Zuoxia, X., et al.: Multi-objective reactive power optimization of decentralized wind farms based on adaptive genetic algorithm. Northeast Power Technol. 37(33), 111–116 (2016)

    Google Scholar 

  5. Xing, Z., Yanning, Xiao, W., et al.: Multi-objective reactive power optimization control of decentralized wind farms at different time levels. J. Electric. Mach. Control 20(11), 246–252 (2016)

    Google Scholar 

  6. Liu, S., Liu, G., Zhou, H.: A robust parallel object tracking method for illumination variations. Mobile Netw. Appl. 24(1), 5–17 (2019). https://doi.org/10.1007/s11036-018-1134-8

    Article  Google Scholar 

  7. Zhicheng, X., Bo, Z., Ming, D., et al.: Random scene simulation of photovoltaic absorptive capacity of distribution network based on voltage sensitivity and optimization of control parameters of inverters. J. Electric. Eng. China 36(26), 1578–1587 (2016)

    Google Scholar 

  8. Liu, S., Fu, W., He, L., Zhou, J., Ma, M.: Distribution of primary additional errors in fractal encoding method. Multimedia Tools Appl. 76(4), 5787–5802 (2014). https://doi.org/10.1007/s11042-014-2408-1

    Article  Google Scholar 

  9. Cao, W., Wang, H., Xue, H., et al.: Study on optimization of voltage attributes on Z. oscilloscope on GRO arrester. J. Xi’an Polytechn. Univ. 2018(06), 686–690 (2018)

    Google Scholar 

  10. Liu, S., Lu, M., Li, H., et al.: Prediction of gene expression patterns with generalized linear regression model. Front. Genetics 10, 120 (2019)

    Article  Google Scholar 

  11. Warwick-Evans, V., Atkinson, P.W., Walkington, I., et al.: Predicting the impacts of wind farms on seabirds: an individual-based model. J. Appl. Ecol. 55(2), 60–66 (2018)

    Article  Google Scholar 

  12. González, J.S., Payán, M.B., Santos, J.M.R.: Optimal design of neighbouring offshore wind farms: a co-evolutionary approach. Appl. Energy 12(1), 140–152 (2019)

    Google Scholar 

  13. Ko, Y., Andresen, M., Buticchi, G., et al.: Discontinuous modulation based active thermal control of power electronic modules in wind farms. IEEE Trans. Power Electron. 3(99), 1 (2018)

    Google Scholar 

  14. Abdolrasol, M.G.M., Hannan, M.A., Mohamed, A., et al.: An optimal scheduling controller for virtual power plant and microgrid integration using binary backtracking search algorithm. IEEE Trans. Ind. Appl. 4(54), 2834–2844 (2018)

    Article  Google Scholar 

  15. Garcia-Ruiz, A., Dominguez-Lopez, A., Pastor-Graells, J., et al.: Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR. Opt. Express 26(1), 463 (2018)

    Article  Google Scholar 

  16. Corcovilos, T.A., Mittal, J.: Two-dimensional optical quasicrystal potentials for ultracold atom experiments. Appl. Opt. 58(9), 2256 (2019)

    Article  Google Scholar 

  17. Liu, S., Li, Z., Zhang, Y., et al.: Introduction of key problems in long-distance learning and training. Mobile Netw. Appl. 24(1), 1–4 (2019). https://doi.org/10.1007/s11036-018-1136-6

    Article  Google Scholar 

  18. Vlahakis, E., Dritsas, L., Halikias, G.: Distributed LQR design for a class of large-scale multi-area power systems. Energies 12(14), 2664 (2019)

    Google Scholar 

  19. Vincenti, G., Bucciero, A., Helfert, M., Glowatz, M. (eds.): E-Learning, E-Education, and Online Training. LNICST, vol. 180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49625-2

    Book  Google Scholar 

  20. Corbellini, A., Godoy, D., Mateos, C., et al.: An analysis of distributed programming models and frameworks for large-scale graph processing. IETE J. Res. 10(5), 1–9 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bian, H.H., Sun, Js., Yang, X. (2021). Intelligent Optimization Design of Reactive Voltage Sensitivity Parameters for Large-Scale Distributed Wind Farms. In: Liu, S., Xia, L. (eds) Advanced Hybrid Information Processing. ADHIP 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-030-67874-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67874-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67873-9

  • Online ISBN: 978-3-030-67874-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics