Skip to main content

Acyclic Coloring Parameterized by Directed Clique-Width

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12601))

Included in the following conference series:

Abstract

An acyclic r-coloring of a directed graph \(G=(V,E)\) is a partition of the vertex set V into r acyclic sets. The dichromatic number of a directed graph G is the smallest r such that G allows an acyclic r-coloring. For symmetric digraphs the dichromatic number equals the well-known chromatic number of the underlying undirected graph. This allows us to carry over the \(\text {W}[1]\)-hardness and lower bounds for running times of the chromatic number problem parameterized by clique-width to the dichromatic number problem parameterized by directed clique-width. We introduce the first polynomial-time algorithm for the acyclic coloring problem on digraphs of constant directed clique-width. From a parameterized point of view our algorithm shows that the Dichromatic Number problem is in \(\text {XP}\) when parameterized by directed clique-width and extends the only known structural parameterization by directed modular width for this problem. Furthermore, we apply defineability within monadic second order logic in order to show that Dichromatic Number problem is in \(\text {FPT}\) when parameterized by the directed clique-width and r. For directed co-graphs, which is a class of digraphs of directed clique-width 2, we even show a linear time solution for computing the dichromatic number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    XP is the class of all parameterized problems which can be solved by algorithms that are polynomial if the parameter is considered as a constant [9].

  2. 2.

    FPT is the class of all parameterized problems which can be solved by algorithms that are exponential only in the size of a fixed parameter while being polynomial in the size of the input size [9].

  3. 3.

    The proofs of the results marked with a \(\bigstar \) are omitted due to space restrictions, see [20].

  4. 4.

    We use the notion of a multi set, i.e., a set that may have several equal elements. For a multi set with elements \(x_1,\ldots ,x_n\) we write \(\mathcal{M}=\langle x_1,\ldots ,x_n \rangle \). The number how often an element x occurs in \(\mathcal{M}\) is denoted by \(\psi (\mathcal{M},x)\). Two multi sets \(\mathcal{M}_1\) and \(\mathcal{M}_2\) are equal if for each element \(x \in \mathcal{M}_1 \cup \mathcal{M}_2\), \(\psi (\mathcal{M}_1,x)=\psi (\mathcal{M}_2,x)\), otherwise they are called different. The empty multi set is denoted by \(\langle \rangle \).

References

  1. Andres, S., Hochstättler, W.: Perfect digraphs. J. Graph Theory 79(1), 21–29 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bang-Jensen, J., Gutin, G.: Classes of Directed Graphs. SMM. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71840-8

    Book  MATH  Google Scholar 

  3. Bang-Jensen, J., Maddaloni, A.: Arc-disjoint paths in decomposable digraphs. J. Graph Theory 77, 89–110 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bokal, D., Fijavz, G., Juvan, M., Kayll, P., Mohar, B.: The circular chromatic number of a digraph. J. Graph Theory 46(3), 227–240 (2004)

    Article  MathSciNet  Google Scholar 

  5. Corneil, D., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 4, 825–847 (2005)

    Article  MathSciNet  Google Scholar 

  6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic. A Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101, 77–114 (2000)

    Article  MathSciNet  Google Scholar 

  8. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for directed cographs. Discret. Appl. Math. 154(12), 1722–1741 (2006)

    Article  MathSciNet  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  10. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2_12

    Chapter  MATH  Google Scholar 

  11. Espelage, W., Gurski, F., Wanke, E.: Deciding clique-width for graphs of bounded tree-width. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 87–98. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6_9

    Chapter  Google Scholar 

  12. Feder, T., Hell, P., Mohar, B.: Acyclic homomorphisms and circular colorings of digraphs. SIAM J. Discret. Math. 17(1), 161–163 (2003)

    Article  MathSciNet  Google Scholar 

  13. Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

    Article  MathSciNet  Google Scholar 

  14. Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S., Zehavi, M. Cliquewidth III: the odd case of graph coloring parameterized by cliquewidth. ACM Trans. Algorithms 15(1), 9:1–9:27 (2018)

    Google Scholar 

  15. Ganian, R.: The parameterized complexity of oriented colouring. In: Proceedings of Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, MEMICS. OASICS, vol. 13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

    Google Scholar 

  16. Ganian, R., Hlinený, P., Kneis, J., Langer, A., Obdrzálek, J., Rossmanith, P.: Digraph width measures in parameterized algorithmics. Discret. Appl. Math. 168, 88–107 (2014)

    Article  MathSciNet  Google Scholar 

  17. Ganian, R., et al.: Are there any good digraph width measures? J. Comb. Theory Ser. B 116, 250–286 (2016)

    Article  MathSciNet  Google Scholar 

  18. Gurski, F., Hoffmann, S., Komander, D., Rehs, C., Rethmann, J., Wanke, E.: Computing directed Steiner path covers for directed co-graphs (extended abstract). In: Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 556–565. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2_45

    Chapter  Google Scholar 

  19. Gurski, F., Komander, D., Rehs, C.: Computing digraph width measures on directed co-graphs. In: Gąsieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651, pp. 292–305. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-0_20

    Chapter  Google Scholar 

  20. Gurski, F., Komander, D., Rehs, C.: Acyclic coloring of special digraphs. ACM Computing Research Repository (CoRR), abs/2006.13911, p. 16 (2020)

    Google Scholar 

  21. Gurski, F., Rehs, C.: Comparing linear width parameters for directed graphs. Theory Comput. Syst. 63(6), 1358–1387 (2019)

    Article  MathSciNet  Google Scholar 

  22. Gurski, F., Wanke, E.: The tree-width of clique-width bounded graphs without \({\rm K}_{n,n}\). In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 196–205. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40064-8_19

    Chapter  Google Scholar 

  23. Gurski, F., Wanke, E., Yilmaz, E.: Directed NLC-width. Theor. Comput. Sci. 616, 1–17 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kanté, M., Rao, M.: The rank-width of edge-coloured graphs. Theory Comput. Syst. 52(4), 599–644 (2013)

    Article  MathSciNet  Google Scholar 

  25. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  26. Li, Z., Mohar, B.: Planar digraphs of digirth four are 2-colorable. SIAM J. Discret. Math. 31, 2201–2205 (2017)

    Article  MathSciNet  Google Scholar 

  27. Millani, M., Steiner, R., Wiederrecht, S.: Colouring non-even digraphs. ACM Computing Research Repository (CoRR), abs/1903.02872, p. 37 (2019)

    Google Scholar 

  28. Mohar, B.: Circular colorings of edge-weighted graphs. J. Graph Theory 43(2), 107–116 (2003)

    Article  MathSciNet  Google Scholar 

  29. Neumann-Lara, V.: The dichromatic number of a digraph. J. Comb. Theory Ser. B 33(2), 265–270 (1982)

    Article  MathSciNet  Google Scholar 

  30. Robertson, N., Seymour, P.: Graph minors II. Algorithmic aspects of tree width. J. Algorithms 7, 309–322 (1986)

    Google Scholar 

  31. Steiner, R., Wiederrecht, S.: Parameterized algorithms for directed modular width. ACM Computing Research Repository (CoRR), abs/1905.13203, p. 37 (2019)

    Google Scholar 

  32. Steiner, R., Wiederrecht, S.: Parameterized algorithms for directed modular width. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 415–426. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2_33

    Chapter  MATH  Google Scholar 

  33. Valdes, J., Tarjan, R., Lawler, E.: The recognition of series-parallel digraphs. SIAM J. Comput. 11, 298–313 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 388221852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Gurski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurski, F., Komander, D., Rehs, C. (2021). Acyclic Coloring Parameterized by Directed Clique-Width. In: Mudgal, A., Subramanian, C.R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2021. Lecture Notes in Computer Science(), vol 12601. Springer, Cham. https://doi.org/10.1007/978-3-030-67899-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67899-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67898-2

  • Online ISBN: 978-3-030-67899-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics