Skip to main content

Towards Explainable Artificial Intelligence and Explanation User Interfaces to Open the ‘Black Box’ of Automated ECG Interpretation

  • Conference paper
  • First Online:
Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications (AVI-BDA 2020, ITAVIS 2020)

Abstract

This an exploratory paper that discusses the use of artificial intelligence (AI) in ECG interpretation and opportunities for improving the explainability of the AI (XAI) when reading 12-lead ECGs. To develop AI systems, many principles (human rights, well-being, data agency, effectiveness, transparency, accountability, awareness of misuse and competence) must be considered to ensure that the AI is trustworthy and applicable. The current computerised ECG interpretation algorithms can detect different types of heart diseases. However, there are some challenges and shortcomings that need to be addressed, such as the explainability issue and the interaction between the human and the AI for clinical decision making. These challenges create opportunities to develop a trustworthy XAI for automated ECG interpretation with a high performance and a high confidence level. This study reports a proposed XAI interface design in automatic ECG interpretation based on suggestions from previous studies and based on standard guidelines that were developed by the human computer interaction (HCI) community. New XAI interfaces should be developed in the future that facilitate more transparency of the decision logic of the algorithm which may allow users to calibrate their trust and use of the AI system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems (The IEEE Global Initiative). Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems, First Edition (EAD1e), Creative Commons Attribution Non-Commercial 4.0 United States License. https://ethicsinaction.ieee.org/#read

  2. Wachter, S., Mittelstadt, B., Floridi, L.: Transparent, explainable, and accountable AI for robotics. Sci. Robot. (2017) https://doi.org/10.1126/scirobotics.aan6080

  3. European Commission. Ethics guidelines for trustworthy AI. Retrieved from https://ec.europa.eu/futurium/en/ai-allianceconsultation/guidelines/1

  4. Schläpfer, J., Wellens, H.J.: Computer-interpreted electrocardiograms: benefits and limitations. J. Am. Coll. Cardiol. 70, 1183–1192 (2017). https://doi.org/10.1016/j.jacc.2017.07.723

    Article  Google Scholar 

  5. Bond, R., et al.: Automation bias in medicine: the influence of automated diagnoses on interpreter accuracy and uncertainty when reading electrocardiograms. J. Electrocardiol. 51, S6–S11 (2018). https://doi.org/10.1016/j.jelectrocard.2018.08.007

    Article  Google Scholar 

  6. Knoery, C.R., Bond, R., et al.: SPICED-ACS: study of the potential impact of a computer-generated ECG diagnostic algorithmic certainty index in STEMI diagnosis: towards transparent AI. J. Electrocardiol. 57, S86–S91 (2019). https://doi.org/10.1016/j.jelectrocard.2019.08.006

    Article  Google Scholar 

  7. Finlay, D., et al.: Effects of electrode placement errors in the EASI-derived 12-lead electrocardiogram. J. Electrocardiol. 43, 606–611 (2010). https://doi.org/10.1016/j.jelectrocard.2010.07.004

    Article  Google Scholar 

  8. Bond, R., Dewar, D., et al.: Human factors analysis of the CardioQuick Patch®: a novel engineering solution to the problem of electrode misplacement during 12-lead electrocardiogram acquisition. J. Electrocardiol. 49, 911–918 (2016). https://doi.org/10.1016/j.jelectrocard.2016.08.009

    Article  Google Scholar 

  9. Rjoob, K., Bond, R., et al.: Data driven feature selection and machine learning to detect misplaced V1 and V2 chest electrodes when recording the 12-lead electrocardiogram. J. Electrocardiol. 57, 39–43 (2019). https://doi.org/10.1016/j.jelectrocard.2019.08.017

    Article  Google Scholar 

  10. Rjoob, K., Bond, R.: Machine learning improves the detection of misplaced v1 and v2 electrodes during 12-lead electrocardiogram acquisition. In: Computing in Cardiology (CinC), pp. 1–4. IEEE (2019). https://doi.org/10.22489/CinC.2019.035

  11. Smulyan, H.: The computerized ECG: friend and foe. Am. J. Med. 132, 153–160 (2018). https://doi.org/10.1016/j.amjmed.2018.08.025

    Article  Google Scholar 

  12. Mason, J.W., et al.: Recommendations for the standardization and interpretation of the electrocardiogram: part II: electrocardiography diagnostic statement list a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol. 49, 1128–1135 (2017). https://doi.org/10.1016/j.jacc.2007.01.025

    Article  Google Scholar 

  13. Lyon, A., et al.: Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. J. R. Soc. Interface 15, 20170821 (2018). https://doi.org/10.1098/rsif.2017.0821

    Article  Google Scholar 

  14. Mark Estes, N.A.: Computerized interpretation of ECGs supplement not a substitute. Circulation: Arrhythmia and Electrophysiology. Vol. 6, pp. 2–4 (2013) https://doi.org/10.1161/CIRCEP.111.000097

  15. Ravichandran, L., et al.: Novel tool for complete digitization of paper electrocardiography data. IEEE J. Transl. Eng. Health Med. 1, 1800107–1800107 (2013). https://doi.org/10.1109/JTEHM.2013.2262024

  16. Baydoun, M., et al.: High precision digitization of paper-based ECG records: a step toward machine learning. IEEE J. Transl. Eng. Health Med. 7, 1–8 (2019). https://doi.org/10.1109/JTEHM.2019.2949784

  17. Brisk, R., Bond, R., et al.: Deep learning to automatically interpret images of the electrocardiogram: Do we need the raw samples? J. Electrocardiol. 57, S65–S69 (2019). https://doi.org/10.1016/j.jelectrocard.2019.09.018

    Article  Google Scholar 

  18. Miller, T., et al.: Explainable AI: beware of inmates running the asylum or: how I learnt to stop worrying and love the social and behavioural sciences. arXiv preprint arXiv:1712.00547 (2017)

  19. Miller, T., et al.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007

    Article  MathSciNet  MATH  Google Scholar 

  20. Lundberg, S., et al.: A unified approach to interpreting model predictions. arXiv:1705.07874 (2017)

  21. Ribeiro, M.T., et al.: “Why should i trust you?”: explaining the predictions of any classifie. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.2939778

  22. Montavon, G., et al.: Methods for interpreting and understanding deep neural networks. Digit. Sig. Proc. 73, 1–15 (2018). https://doi.org/10.1016/j.dsp.2017.10.011

    Article  MathSciNet  Google Scholar 

  23. Zilke, J.R., Loza Mencía, E., Janssen, F.: DeepRED–Rule Extraction from Deep Neural Networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_29

    Chapter  Google Scholar 

  24. Liao, Q.V., et al.: Questioning the AI: informing design practices for explainable AI user experiences. In: Proceedings of the ACM CHI Conference on Human Factors in Computing Systems (CHI 2020), pp. 1–15 (2020). https://doi.org/10.1145/3313831.3376590

  25. Badashian, A.S., Mahdavi, M., Pourshirmohammadi, A.: Fundamental usability guidelines for user interface design. In: International Conference on Computational Sciences and Its Applications, pp. 106–113 (2008). https://doi.org/10.1109/ICCSA.2008.45

  26. Low, S., et al.: Enhancing user experience through customisation of UI design. Procedia Manuf. 3, 1932–1937 (2015). https://doi.org/10.1016/j.promfg.2015.07.237

    Article  Google Scholar 

  27. Cairns, A.W., Bond, R.R., et al.: A decision support system and rule-based algorithm to augment the human interpretation of the 12-lead electrocardiogram. J. Electrocardiol. 50, 781–786 (2017). https://doi.org/10.1016/j.jelectrocard.2017.08.007

    Article  Google Scholar 

  28. Alqaraawi, A., et al.: Evaluating saliency map explanations for convolutional neural networks: a user study. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 275–285 (2020). https://doi.org/10.1145/3377325.3377519

  29. Yang, F., et al. How do visual explanations foster end users’ appropriate trust in machine learning?. Proceedings of the 25th International Conference on Intelligent User Interfaces March 2020, pp. 189–201, https://doi.org/10.1145/3377325.3377480

  30. Drozdal, J., et al.: Trust in AutoML: exploring information needs for establishing trust in automated machine learning systems. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 297–307 (2020). https://doi.org/10.1145/3377325.3377501

  31. DAIC (AUGUST 08, 2019). Retrieved from https://www.dicardiology.com/content/half-hospital-decision-makers-plan-invest-ai-2021

  32. Reis, T., Bornschlegl, M.X., Hemmje, M.L.: Towards a reference model for artificial intelligence supporting big data analysis. In: Proceedings of the 2020 International Conference on Data Science (ICDATA2020) (2020)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the European Union’s INTERREG VA programme, managed by the Special EU Programmes Body (SEUPB). The work is associated with the project – ‘Centre for Personalised Medicine – Clinical Decision Making and Patient Safety’. The views and opinions expressed in this study do not necessarily reflect those of the European Commission or the Special EU Programmes Body (SEUPB).

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Rjoob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rjoob, K. et al. (2021). Towards Explainable Artificial Intelligence and Explanation User Interfaces to Open the ‘Black Box’ of Automated ECG Interpretation. In: Reis, T., Bornschlegl, M.X., Angelini, M., Hemmje, M.L. (eds) Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications. AVI-BDA ITAVIS 2020 2020. Lecture Notes in Computer Science(), vol 12585. Springer, Cham. https://doi.org/10.1007/978-3-030-68007-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68007-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68006-0

  • Online ISBN: 978-3-030-68007-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics