Abstract
Proving the functionality of AI-controlled automated vehicles is a challenging task due to the enormous overall complexity. Although a scenario-based validation approach is widely accepted in the literature, the identification of these scenarios is still an open issue.
Real-world test drives are valuable data sources for this purpose. However, an automated system is required for data management and scenario identification to analyze the vast amount of data in a legitimate amount of time and effort. Therefore, this work proposes a modular multi-tier Vehicle Data Management System for large-scale test campaign management and analysis as the basis for scenario-based validation of automated driving functions. For system demonstration, lane-change maneuvers are identified and extracted, and an onboard DAS is evaluated with a real-world test drive sequence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Intelligent Validierung von Fahrerassistanzsystemen (engl.: intelligent validation of driver assistance systems) of the Hochschule Emden/Leer.
- 2.
The Automotive Data and Time-triggered Framework (ADTF) of Elektrobit is used for synchronous data measurement and capturing.
References
Bach, J., Otten, S., Sax, E.: Model based scenario specification for development and test of automated driving functions. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 1149–1155, June 2016. https://doi.org/10.1109/IVS.2016.7535534
Baek, S., Kim, D.Y.: Empirical sensitivity analysis of discretization parameters for fault pattern extraction from multivariate time series data. IEEE Trans. Cybern. 47(5), 1198–1209 (2017). https://doi.org/10.1109/TCYB.2016.2540657
Benmimoun, M., Fahrenkrog, F., Zlocki, A., Eckstein, L.: Incident detection based on vehicle can-data within the large scale field operational test “eurofot”. In: 22nd Enhanced Safety of Vehicles Conference (ESV 2011), Washington, DC/USA (2011)
Damm, W., Möhlmann, E., Peikenkamp, T., Rakow, A.: A formal semantics for traffic sequence charts. In: Lohstroh, M., Derler, P., Sirjani, M. (eds.) Principles of Modeling. LNCS, vol. 10760, pp. 182–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95246-8_11
Elrofai, H., Paardekooper, J., Gelder, E.d., Kalisvaart, S., Op den Camp, O.: Streetwise: scenario-based safety validation of connected automated driving. Technical report TNO (2018)
Fraenkel, D.J., Cowie, M., Daley, P.: Quality benefits of an intensive care clinical information system. Crit. Care Med. 31(1), 120–125 (2003)
Frehner, M., Brändli, M.: Virtual database: spatial analysis in a web-based data management system for distributed ecological data. Environ. Model. Softw. 21(11), 1544–1554 (2006)
Haja, A., Koch, C., Klitzke, L.: The ADAS swot analysis - a strategy for reducing costs and increasing quality in ADAS testing. In: Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2017), pp. 320–325 (2017). https://doi.org/10.5220/0006354103200325
Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy Pract. 94, 182–193 (2016)
Klauer, S.G., Dingus, T.A., Neale, V.L., Sudweeks, J.D., Ramsey, D.J., et al.: The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data. Technical report National Highway Traffic Safety Administration (2006)
Klitzke, L., Koch, C., Haja, A., Köster, F.: Real-world test drive vehicle data management system for validation of automated driving systems. In: Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2019), pp. 171–180, May 2019. https://doi.org/10.5220/0007720501710180
Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: an enabling technique. Data Min. Knowl. Disc. 6(April), 393–423 (2002). https://doi.org/10.1023/A:1016304305535
Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and validation of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1821–1827, June 2018. https://doi.org/10.1109/IVS.2018.8500406
Moskovitch, R., Shahar, Y.: Classification-driven temporal discretization of multivariate time series. Data Min. Knowl. Disc. 29(4), 871–913 (2014). https://doi.org/10.1007/s10618-014-0380-z
Olsen, E.C.B., Lee, S.E., Wierwille, W.W., Goodman, M.J.: Analysis of distribution, frequency, and duration of naturalistic lane changes. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 46, no. 22, pp. 1789–1793 (2002). https://doi.org/10.1177/154193120204602203
Pütz, A., Zlocki, A., Bock, J., Eckstein, L.: System validation of highly automated vehicles with a database of relevant traffic scenarios. In: 12th ITS European Congress. ITS European Congress (2017)
Roesener, C., Fahrenkrog, F., Uhlig, A., Eckstein, L.: A scenario-based assessment approach for automated driving by using time series classification of human-driving behaviour. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1360–1365, November 2016. https://doi.org/10.1109/ITSC.2016.7795734
Schneider, J., Wilde, A., Naab, K.: Probabilistic approach for modeling and identifying driving situations. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 343–348, June 2008. https://doi.org/10.1109/IVS.2008.4621145
Schuldt, F.: Ein Beitrag für den methodischen Test von automatisierten Fahrfunktionen mit Hilfe von virtuellen Umgebungen. Ph.D. thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig, April 2017. https://doi.org/10.24355/dbbs.084-201704241210
Shavit, E., Teichner, L.: Interactive market management system, US Patent 4.799.156, January 1989
Sonka, A., Krauns, F., Henze, R., Küçükay, F., Katz, R., Lages, U.: Dual approach for maneuver classification in vehicle environment data. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 97–102, June 2017. https://doi.org/10.1109/IVS.2017.7995704
Stellet, J.E., Zofka, M.R., Schumacher, J., Schamm, T., Niewels, F., Zöllner, J.M.: Testing of advanced driver assistance towards automated driving: a survey and taxonomy on existing approaches and open questions. In: 18th IEEE International Conference on Intelligent Transportation Systems, pp. 1455–1462, September 2015. https://doi.org/10.1109/ITSC.2015.236
Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 982–988, September 2015. https://doi.org/10.1109/ITSC.2015.164
Weidl, G., Madsen, A.L., Kasper, D., Breuel, G.: Optimizing Bayesian networks for recognition of driving maneuvers to meet the automotive requirements. In: 2014 IEEE International Symposium on Intelligent Control (ISIC), pp. 1626–1631, October 2014. https://doi.org/10.1109/ISIC.2014.6967630
Winner, H., Lemmer, K., Form, T., Mazzega, J.: PEGASUS—first steps for the safe introduction of automated driving. In: Meyer, G., Beiker, S. (eds.) Road Vehicle Automation 5. LNM, pp. 185–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94896-6_16
Wissing, C., Nattermann, T., Glander, K., Bertram, T.: Probabilistic time-to-lane-change prediction on highways. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1452–1457, June 2017. https://doi.org/10.1109/IVS.2017.7995914
Zhao, D., Guo, Y., Jia, Y.J.: TrafficNet: an open naturalistic driving scenario library. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8, October 2017. https://doi.org/10.1109/ITSC.2017.8317860
Acknowledgements
We thank LG Electronics, Vehicle Solution Company, Republic of Korea, for supporting this project by cooperating in capturing large-scale test drives and providing valuable measurement equipment.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Klitzke, L., Koch, C., Haja, A., Köster, F. (2021). Vehicle Data Management System for Scenario-Based Validation of Automated Driving Functions. In: Helfert, M., Klein, C., Donnellan, B., Gusikhin, O. (eds) Smart Cities, Green Technologies and Intelligent Transport Systems. SMARTGREENS VEHITS 2019 2019. Communications in Computer and Information Science, vol 1217. Springer, Cham. https://doi.org/10.1007/978-3-030-68028-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-68028-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68027-5
Online ISBN: 978-3-030-68028-2
eBook Packages: Computer ScienceComputer Science (R0)