Skip to main content

High Performance Computing Simulations of Granular Media in Silos

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1327))

Included in the following conference series:

  • 563 Accesses

Abstract

This article presents the application of high performance computing for efficient simulations of granular media in silos. Granular media are extensively used in industry, where storage and proper treatment pose several challenges to the scientific community. A relevant problem concerns the study of granular media stored in a silo. Determining the behavior of the media during load and discharge stages is critical. Knowing how the stored particles interact with each other and how they interact with the storage structure can lead to understanding and preventing undesirable effects (e.g., the collapse of the structure) during the silo operation. Charge and discharge processes of granular media in silos are frequently studied using computer simulations. High performance computing comes to help researchers to perform granular media simulations for systems with a large number of particles, in order to model realistic situations in reasonable computing times. This article describes the application of a parallel/distributed high performance computing approach for studying the mechanisms that control the charging and discharging process of silos, in which grains pass through a bottleneck. Simulations are performed applying the Discrete Element Method, and the experimental evaluation is performed over the high performance computing infrastructure of the National Supercomputing Center in Uruguay. The analysis includes large realistic scenarios considering the physical properties of different grains, involving up to 450,000 particles. The proposed implementation allowed to reduce the execution time of simulations up to 42%, demonstrating the capabilities of the proposed parallel/distributed computing approach to scale to solve large problem instances properly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amritkar, A., Deb, S., Tafti, D.: Efficient parallel CFD-DEM simulations using OpenMP. J. Comput. Phys. 256, 501–519 (2014)

    Article  MathSciNet  Google Scholar 

  2. Berger, R., Kloss, C., Kohlmeyer, A., Pirkera, S.: Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technol. 278, 234–247 (2015)

    Article  Google Scholar 

  3. Chen, J., Rotter, J., Ooi, J., Zhong, Z.: Flow pattern measurement in a full scale silo containing iron ore. Chem. Eng. Sci. 60, 3029–3041 (2005)

    Article  Google Scholar 

  4. Chen, J., Rotter, J., Ooi, J., Zhong, Z.: Correlation between the flow pattern and wall pressures in a full scale experimental silo. Eng. Struct. 29(9), 2308–2320 (2007)

    Article  Google Scholar 

  5. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  6. DEM Solutions: EDEM-The leading Discrete Element Method (DEM) software. https://www.edemsimulation.com/. Accessed 6 July 2020

  7. El Observador: Hallan muertos a los dos operarios de Fadisol. https://www.elobservador.com.uy/hallan-muertos-los-dos-operarios-fadisol-n297567. Accessed 6 July 2020

  8. Frascarelli, D., Nesmachnow, S., Tancredi, G.: High-performance computing of self-gravity for small solar system bodies. IEEE Comput. 47(9), 34–39 (2014)

    Article  Google Scholar 

  9. Gopalakrishnan, P., Tafti, D.: Development of parallel DEM for the open source code MFIX. Powder Technol. 235, 33–41 (2013)

    Article  Google Scholar 

  10. Hanxleden, R., Scott, L.: Load balancing on message passing architectures. J. Parallel Distrib. Comput. 13(3), 312–324 (1991)

    Article  Google Scholar 

  11. Jaeger, H., Nagel, S., Behringer, R.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259 (1996)

    Article  Google Scholar 

  12. Jenike, A., Johanson, J., Carson, J.: Bin loads–parts 2, 3 and 4: concepts, mass-flow bins, funnel-flow bins. J. Eng. Ind. 95(1), 1–16 (1973)

    Article  Google Scholar 

  13. Kačianuskas, R., Maknickas, A., Kačeniauskas, A., Markauskas, D., Balevičius, R.: Parallel discrete element simulation of poly-dispersed granular material. Adv. Eng. Softw. 41, 52–63 (2010)

    Article  Google Scholar 

  14. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Powder Technol. 12(2/3), 140–152 (2012)

    MathSciNet  Google Scholar 

  15. Markauskas, D., Kačeniauskas, A., Maknickas, A.: Dynamic domain decomposition applied to hopper discharge simulation by discrete element method. Inf. Technol. Control 40(4), 286–292 (2011)

    Google Scholar 

  16. National Energy Technology Laboratory: MFIX - Multiphase Flow with Interphase eXchanges. https://mfix.netl.doe.gov/. Accessed 06 June 2020

  17. Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería. Universidad de la República. Revista de la Asociación de Ingenieros del Uruguay 61(1), 12–15 (2010). Text in Spanish

    Google Scholar 

  18. Nielsen, J.: Pressures from flowing granular solids in silos. Philos. Trans.: Math. Phys. Eng. Sci. 1747, 2667 (1998)

    Article  Google Scholar 

  19. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  20. Richard, P., Nicodemi, M., Delannay, R., Ribiere, P., Bideau, D.: Slow relaxation and compaction of granular systems. Nature Mater. 4(2), 121–128 (2005)

    Article  Google Scholar 

  21. Schuricht, T., Fürll, C., Enstad, G.: Full scale silo tests and numerical simulations of the “cone in cone” concept for mass flow. In: Levy, A., Kalman, H. (eds.) Handbook of Conveying and Handling of Particulate Solids, Handbooks of Powder Technology, vol. 10, pp. 175–180. Elsevier Science B.V. (2001)

    Google Scholar 

  22. Shigeto, Y., Sakai, M.: Parallel computing of discrete element method on multi-core processors. Particuology 9, 398–405 (2011)

    Article  Google Scholar 

  23. Tancredi, G., Maciel, A., Heredia, L., Richeri, P., Nesmachnow, S.: Granular physics in low-gravity environments using discrete element method. Monthly Notices Roy. Astron. Soc. 420(4), 3368–3380 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Iturriaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Da Silva, M., Nesmachnow, S., Iturriaga, S., Usera, G. (2021). High Performance Computing Simulations of Granular Media in Silos. In: Nesmachnow, S., Castro, H., Tchernykh, A. (eds) High Performance Computing. CARLA 2020. Communications in Computer and Information Science, vol 1327. Springer, Cham. https://doi.org/10.1007/978-3-030-68035-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68035-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68034-3

  • Online ISBN: 978-3-030-68035-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics