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Abstract. The 3D volumetric shape of the heart’s left ventricle (LV)
myocardium (MYO) wall provides important information for diagnosis
of cardiac disease and invasive procedure navigation. Many cardiac im-
age segmentation methods have relied on detection of region-of-interest
as a pre-requisite for shape segmentation and modeling. With segmen-
tation results, a 3D surface mesh and a corresponding point cloud of
the segmented cardiac volume can be reconstructed for further analyses.
Although state-of-the-art methods (e.g., U-Net) have achieved decent
performance on cardiac image segmentation in terms of accuracy, these
segmentation results can still suffer from imaging artifacts and noise,
which will lead to inaccurate shape modeling results. In this paper, we
propose a PC-U net that jointly reconstructs the point cloud of the LV
MYO wall directly from volumes of 2D CT slices and generates its seg-
mentation masks from the predicted 3D point cloud. Extensive experi-
mental results show that by incorporating a shape prior from the point
cloud, the segmentation masks are more accurate than the state-of-the-
art U-Net results in terms of Dice’s coefficient and Hausdorff distance.
The proposed joint learning framework of our PC-U net is beneficial for
automatic cardiac image analysis tasks because it can obtain simultane-
ously the 3D shape and segmentation of the LV MYO walls.

Keywords: Point cloud · Segmentation · LV shape modeling.

1 Introduction

Cardiovascular disease is one of the major causes of human death worldwide.
The shape of the left ventricle (LV) myocardium (MYO) wall plays an impor-
tant role in diagnosis of cardiac disease, and in surgical and other invasive cardiac
procedures [6]. It allows the subsequent cardiac LV motion function analysis to
determine the presence and location of possible cardiac disease [4]. In order to
automatically evaluate cardiac function measures such as the ejection fraction
(EF), most previous methods first segment the LV blood pool or LV MYO from
images [5] then generate a shape model from the segmentation results. However,
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(a)                             (b)                          (c)

Fig. 1. The shape generated from U-Net based segmentation results can be erroneous
(holes indicated by yellow arrows) due to the thin wall structure of the myocardium
apex (green arrow). (a) is the ground truth (in white color) of segmentation over-
laid by the U-Net segmentation result shown in (b). (c) is the LV MYO wall shape
reconstructed from (b).

this sequential pipeline is not ideal since the shape reconstruction strongly de-
pends on the precision of the segmentation algorithms. As the example shown
in Fig. 1, due to the imperfect segmentation result, the generated 3D shape is
erroneous and not suitable in a practical clinical scenario. It is therefore imper-
ative to develop a more robust approach for LV MYO segmentation jointly with
accurate and clinically useful myocardium 3D surface reconstruction.

The 3D shape of an object can be described as a 3D mesh or point cloud
(PC). A 3D mesh contains a set of vertices, edges and faces, which can be

represented as a graph M = (V,E), where M is the mesh, V = {vi}Ni=1 is the

set of N vertices and E = {ej}Kj=1 is a set of K edges with each connecting

two vertices. Each vertex v has a 3D coordinate (x, y, z). The set of the vertices
V forms a point cloud. Point cloud-based shape representations have received
increasing attention in medical image analysis. In [1], a convolutional neural
network (CNN)-based classifier was first trained to estimate a point cloud from
3D volumetric images. In particular, a point cloud network was trained to classify
each point into foreground or background in order to refine the segmentation
mask of the peripheral nerve. In [2], an organ point-network was introduced to
learn the shape of abdomen organs which was described as points located on
the organ surface. This point-network was trained together with a CNN-based
segmentation model to help improving organ segmentation results in a multi-task
learning manner. Recently, another method, named PointOutNet was proposed
to predict a 3D point cloud from a single RGB image [3]. In [14], the same model
was applied to conduct one-stage shape instantiation for the right ventricle (RV)
from a single 2D long-axis cardiac MR image. However, their method required an
optimum imaging plane, which was decided by a predefined 3D imaging process
to acquire a synchronized 2D image as the input to the PointOutNet.

In this paper, we propose a PC-U net to reconstruct a 3D point cloud of
the LV MYO shape from a volume of CT images. In order to segment the my-
ocardium wall for other applications such as global heart function evaluation, we
design this PC-U net to reconstruct the slice segmentation masks from the point
cloud directly. The benefits of our PC-U net are twofold. First, the reconstructed
LV MYO wall 3D shape is no longer dependent on the precision of the segmen-
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Fig. 2. An overview of the proposed PC-U net for 3D point cloud reconstruction and
segmentation of the LV MYO wall simultaneously (best view in color). The numbers
on the top or bottom of a bar depict the number of output channels for convolutional
layers or fully connected layers. N is the point number of a point cloud.

tation results. Second, the LV MYO wall segmentation results are reconstructed
from the point cloud, therefore it combines the reconstructed shape prior into
the segmentation branch of the network, which, in turn, makes the segmentation
results more accurate [8,13]. To the best of our knowledge, this is the first work
that explicitly utilizes features from an estimated shape prior of an organ in the
form of a point cloud to reconstruct segmentation masks.

2 Proposed Method

2.1 PC-U Net

Fig. 2 shows the architecture of our proposed PC-U net for 3D point cloud
reconstruction and segmentation of the LV MYO wall. The PC-U net consists
of three parts: image encoder, point net, and mask decoder.

Image Encoder As shown in Fig. 2, the image encoder takes 3D volumes
of CT images as input and extracts image features IF (x′, y′, z′) at each voxel
(x′, y′, z′). This branch is used for 3D point cloud reconstruction, which is similar
to the PointOutNet [14], except that the inputs are 3D volumetric images and
convolution kernels are 3D.

Point Net The point net consists of a multi-layer perceptron (MLP), a global
max-pooling layer and two fully connected layers. The MLP is consisted of three
convolutional layers (with 32, 128, 512 channels, respectively), followed by ReLU
activation. This branch is used to extract point features PF (x, y, z) at each
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3D point (x, y, z) of the point cloud [10]. These point features will be used to
reconstruct segmentation masks. In this way, the point cloud can provide a shape
prior for the segmentation task explicitly.

Mask Decoder The lower branch is the mask decoder, which is used for LV
MYO wall segmentation. We refer the process of reconstructing dense segmenta-
tion masks from a sparse point cloud as segmentation. It consists of up-sampling
layers and convolutional layers. In order to take advantage of the more detailed
contextual image features in the shallow layers, we use skip connections between
the upper branch and the lower branch. This fashion makes the upper and lower
branches similar to the encoder and decoder of the U-Net [11]. In particular, the
features from the encoder are multiplied by the features in the decoder voxel-
wisely. We empirically found that voxel-wise multiplication operation could make
the output masks have less outliers. The significant difference between the pro-
posed PC-U net and a U-Net is that PC-U net allows the intermediate output
of the image encoder be the point cloud, which serves as an effective regularizer
and provides a shape prior for segmentation. Given the point features PF (x, y, z)
and image features IF (x′, y′, z′), the mask decoder branch will learn an implicit
function f represented by the up-sampling layers and convolutional layers:

f(PF (x, y, z), IF (x′, y′, z′)) = m : m ∈ {0, 1} , (1)

where m is the binary segmentation mask.

2.2 Loss Function

We use the Chamfer loss [12] to measure the distance between the predicted
point cloud and the ground-truth point cloud. It can be formulated as:

lp =
1

|YP |
∑

yp∈YP

minyg∈YG
‖yp − yg‖2 +

1

|YG|
∑

yg∈YG

minyp∈YP
‖yg − yp‖2 , (2)

where the first term minyg∈YG
‖yp − yg‖2 enforces that any 3D point yp in the

predicted point cloud YP has a matching 3D point yg in the ground-truth point
cloud YG, and vice versa for the second term minyp∈YP

‖yg − yp‖2.
For segmentation, we adopt the soft Dice loss [7] to measure the error between

the predicted mask and the ground truth:

ls = 1−
2
∑N

i pigi∑N
i (p2i + g2i )

, (3)

where N is the total number of voxels, pi is the ith voxel of the predicted mask
and gi is the ith voxel of the ground-truth mask.

The PC-U net is trained end-to-end and optimized by the following weighted
loss of lp and ls.

Loss = lp + λ · ls, (4)

where λ is a balancing weight. We empirically set λ = 0.001 via the grid search.
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Fig. 3. The process of how to get the ground-truth point cloud: (1) A mesh is first
built from the 3D volumetric masks; (2) The vertices of the mesh form a dense point
cloud; (3) We down-sample a sparse point cloud from the dense point cloud.

3 Experiments

We validated the proposed PC-U net on a publicly available 3D cardiac CT
dataset [15], which contains 20 subjects. In order to deal with the rather small
number of available training samples, we used elastic deformation to augment
the training set by 200 times. After augmentation, there are 4,000 samples in
total. We first cropped out the region-of-interest of LV and sampled all volumes
and their labels to 1.0 mm isotropically. Then the image volume was resized
to a fixed size as (128, 128, 64). The intensity values of the CT volumes were
first divided by 2048 and then clamped between [−1, 1]. The ground-truth point
cloud generation process is shown in Fig. 3. All point clouds were centered at
(0, 0, 0) by subtracting their own center coordinates. In our experiments, the
total number of points was set to be N = 4096. To show the robustness and
effectiveness of our PC-U net, we performed 4-fold cross validation experiments.

Since there is no other work that jointly reconstructs a point cloud and
segments the LV MYO wall, we will compare the two tasks separately. For point
cloud reconstruction, PointOutNet [3] is the baseline model, which takes as input
a single image slice [14] and outputs a 3D point cloud, as shown in the upper
encoder branch of Fig. 2. Depending on the input data (a single slice of long
axis image or the whole 3D volumetric images) and the convolutional kernel (2D
or 3D), we create three variants: PointOutNet-single-slice, PointOutNet-volume-
2DConv and PointOutNet-volume-3DConv. For segmentation, the state-of-the-
art model U-Net [9] is compared to our method. We consider 3D volumetric
images as input, giving two models: UNet-volume-2DConv and UNet-volume-
3DConv. Our PC-Unet-2DConv and PC-Unet-3DConv also take as input 3D
volumetric images, and output the 3D point clouds and segmentation masks
simultaneously. The goal of this experiment is to validate the significance of
using 3D input and solving two tasks together as well as show how they benefit
each other.

All models were trained on a single NVIDIA Tesla K40 GPU with Adam
optimizer and the learning rate was set at 1e−4. The Chamfer distance (CD)
error between prediction and ground truth was used to measure the point cloud
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Table 1. Average performance of 4-fold cross validation on the point cloud recon-
struction and segmentation of left ventricle myocardium (MYO) wall. The mean and
standard deviation values over all the folds are reported.

Method
PC Reconstruction Segmentation

CD (mm) Dice HD (mm)

PointOutNet-single-slice 1.489 ± 0.547 - -
PointOutNet-volume-2DConv 1.454 ± 0.422 - -
PointOutNet-volume-3DConv 1.330 ± 0.330 - -

UNet-volume-2DConv - 0.843 ± 0.024 16.477 ± 8.311
UNet-volume-3DConv - 0.877 ± 0.012 10.446 ± 4.489

PC-Unet-2DConv 1.278 ± 0.249 0.838 ± 0.026 10.894 ± 2.176
PC-Unet-3DConv (Ours) 1.276± 0.168 0.885± 0.011 7.050± 1.103

(a) (e)(d)(c)(b)

Fig. 4. LV MYO wall point cloud reconstruction results. (a) PointOutNet (blue) over-
laid with ground-truth point cloud (red). (b) PointOutNet. (c) PC-U net (blue) over-
laid with ground-truth point cloud (red). (d) PC-U net (Ours). (e) ground-truth point
cloud.

reconstruction performance. Dice’s coefficient and Hausdorff distance (HD) error
were used to evaluate the segmentation performance.

Experimental Results. Table 1 shows the average performance on LV MYO
wall point cloud reconstruction and segmentation of the 4-fold cross validation.
As we can see from the table, with more information contained in a volume input
(PointOutNet-single-slice v.s. PointOutNet-volume-2DConv), the reconstructed
point cloud gets better in terms of CD error. In addition, 3D convolution outper-
forms 2D convolution (PointOutNet-volume-2DConv v.s. PointOutNet-volume-
3DConv) on the point cloud reconstruction task. PC-Unet-3DConv achieves the
best point cloud reconstruction result among all the models, which could be at-
tributed to the joint learning of point cloud reconstruction and segmentation,
apart from using a volume input and 3D convolution.

Fig. 4 shows two cases (the first and the second rows) of visual comparisons
between the baseline (PointOutNet-single-slice) and the proposed model (PC-
Unet-3DConv). It is clear that baseline model fails to reconstruct the points on
the thin areas of myocardium including the atrioventricular ring and the apex
(indicated by arrows). This limitation has been pointed out by the authors in
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Case 1 Case 2

Fig. 5. LV MYO wall shape modeling from U-Net segmentation (first row) and point
cloud predicted by the proposed PC-U net (Ours, second row). Case one: first to third
column. Case two: fourth to sixth column. Each column for each case represents a
specific view.

Table 2. Average performance of the ablation study.

Method
PC Reconstruction Segmentation

CD (mm) Dice HD (mm)

PC-Mask-Decoder - 0.725 8.682
PC-Unet-no-skip 1.182 0.699 7.896
PC-Unet (Ours) 1.149 0.884 5.862

[14]. When combining with more 3D contextual information in contrast to a
single input 2D image slice, the proposed PC-U net successfully reconstructs the
3D points on these thin regions of myocardium.

For segmentation of the LV MYO, PC-Unet-3DConv achieves a slightly bet-
ter result in terms of Dice’s coefficient compared to UNet-volume-3DConv. Note
that it achieves a significant smaller Hausdorff distance error. Again, 3D con-
volution outperforms 2D convolution (UNet-volume-2DConv v.s. UNet-volume-
3DConv, PC-Unet-2DConv v.s. PC-Unet-3DConv) on the segmentation task.
Although PC-Unet-2DConv performs slightly worse than UNet-volume-2DConv
in terms of Dice’s coefficient, its Hausdorff distance error is much smaller than
UNet-volume-2DConv, suggesting the significant benefit of using the shape prior
provided by the point cloud on the segmentation task. We qualitatively show two
cases of the shape reconstructed from the segmentation results of UNet-volume-
3DConv and the predicted point cloud of the proposed PC-Unet-3DConv in
Fig. 5, respectively. It is clear that due to error segmentation, there can be holes
on the surface of the LV MYO wall shape (indicated by blue arrows). When
our PC-U net takes as input the 3D volumetric images it successfully predicts
a complete shape of the LV MYO wall without any holes. The large Hausdorff
distance error of UNet-volume-3DConv indicates that there are some isolated
outliers in the segmentation results, shown as green arrows in Fig. 5.

Ablation Study In this experiment, we demonstrate how the PC-U net can re-
cover segmentation details using skip connections between encoder and decoder.
We test 3 models here with a 1-fold experiment. The first model is composed
of the Point Net and Mask Decoder with the ground-truth point cloud as input
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(a) (b) (c) (d) (e)

Fig. 6. LV MYO segmentation results. (a) the CT image slice. (b) PC-Mask-Decoder.
(c) PC-Unet-no-skip. (d) PC-U net (Ours). (e) ground-truth mask.

(PC-Mask-Decoder). With this model, we plan to demonstrate that CNNs can
reconstruct dense masks from a sparse point cloud. The second model is the
PC-U net without skip connections (PC-Unet-no-skip). The third model is the
proposed PC-U net model. All the models use 3D convolution. The point cloud
reconstruction and segmentation results are shown in Table 2.

From Table 2, although the point cloud is a sparse representation of the
3D shape of LV MYO wall, we can use the Point Net to extract point features
efficiently with which the Mask Decoder can reconstruct a dense segmentation
mask. To our knowledge, this is the first work that uses CNNs to reversely
reconstruct a dense mask from a sparse point cloud. However, as shown in Fig. 6,
the PC-Mask-Decoder alone can only reconstruct a coarse mask. As indicated
by the arrows, some details of the mask cannot be recovered very well. The PC-
Unet-no-skip model takes input as the volumetric images but it does not consider
the detailed contextual image features extracted by the Image Encoder, again
resulting in coarse segmentation. Another reason for its lower Dice’s coefficient
compared to PC-Mask-Decoder is that the point cloud reconstructed by the
PC-Unet-no-skip model still has some errors, which will introduce bias in point
features. The proposed PC-U net achieves the best point cloud reconstruction
and recovers most details of the segmentation by using skip connections and
joint learning.

4 Conclusion

In this work, we proposed a PC-U net to reconstruct an LV MYO wall point cloud
from 3D volumetric CT images. By combining with the 3D context information
in the 3D volumetric images, the PC-U net could successfully reconstruct the
3D point cloud of the LV MYO wall. Our PC-U net models the shape of the LV
MYO wall directly from the 3D volumetric images, which is accurate and avoids
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errors induced by potentially inaccurate segmentation results. We demonstrated
that the PC-U net could not only find the shape of LV MYO wall, but also
obtain its segmentation results simultaneously. With a shape prior provided by
the point cloud, the segmentation results are more accurate than state-of-the-art
U-Net results in terms of Dice’s coefficient and Hausdorff distance.
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