Skip to main content

Automatic Myocardial Disease Prediction from Delayed-Enhancement Cardiac MRI and Clinical Information

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges (STACOM 2020)

Abstract

Delayed-enhancement cardiac magnetic resonance (DE-CMR) provides important diagnostic and prognostic information on myocardial viability. The presence and extent of late gadolinium enhancement (LGE) in DE-CMR is negatively associated with the probability of improvement in left ventricular function after revascularization. Moreover, LGE findings can support the diagnosis of several other cardiomyopathies, but their absence does not rule them out, making disease classification by visual assessment difficult. In this work, we propose deep learning neural networks that can automatically predict myocardial disease from patient clinical information and DE-CMR. All the proposed networks achieved very good classification accuracy (>85%). Including information from DE-CMR (directly as images or as metadata following DE-CMR segmentation) is valuable in this classification task, improving the accuracy to 95–100%.

M. Varela and T.M. Correia—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. EMIDEC classification challenge (2020). http://emidec.com/classification-contest

  2. Allman, K., et al.: Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J. Am. Coll. Cardiol. 39(7), 1151–8 (2002)

    Article  Google Scholar 

  3. Arai, A.: The cardiac magnetic resonance (CMR) approach to assessing myocardial viability. J. Nucl. Cardiol. 18(6), 1095–1102 (2011)

    Article  Google Scholar 

  4. Baeßler, B., et al.: Mapping tissue inhomogeneity in acute myocarditis: a novel analytical approach to quantitative myocardial edema imaging by T2-mapping. J. Cardiovasc. Magn. Reson. 17(1), 115 (2015)

    Article  Google Scholar 

  5. Bettencourt, N., Chiribiri, A., Schuster, A., Nagel, E.: Assessment of myocardial ischemia and viability using cardiac magnetic resonance. Curr. Heart Fail Rep. 6(3), 142–153 (2009)

    Article  Google Scholar 

  6. Bonow, R., et al.: Myocardial viability and survival in ischemic left ventricular dysfunction. N. Engl. J. Med. 364(17), 1617–25 (2011)

    Article  Google Scholar 

  7. Gerber, B., et al.: Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J. Am. Coll. Cardiol. 59(9), 825–35 (2012)

    Article  Google Scholar 

  8. Kerfoot, E., Puyol Anton, E., Ruijsink, B., Clough, J., King, A.P., Schnabel, J.A.: Automated CNN-based reconstruction of short-axis cardiac MR sequence from real-time image data. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 32–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_4

    Chapter  Google Scholar 

  9. Kim, R., et al.: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343(20), 1445–53 (2000)

    Article  Google Scholar 

  10. Kramer, C., et al.: Role of cardiac MR imaging in cardiomyopathies. J. Nucl. Med. 56, 39S–45S (2015)

    Article  Google Scholar 

  11. Lalande, A., et al.: Emidec: a database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI. Data 5(4), 89 (2020)

    Article  Google Scholar 

  12. Lee, E., et al.: Practical guide to evaluating myocardial disease by cardiac MRI. Am. J. Roentgenol. 214(3), 546–556 (2020)

    Article  Google Scholar 

  13. Leiner, T., et al.: Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J. Cardiovasc. Magn. Reson. 21(1), 61 (2019)

    Article  Google Scholar 

  14. Lourenço, A., et al.: Left atrial ejection fraction estimation using SEGANet for fully automated segmentation of CINE MRI (2020)

    Google Scholar 

  15. Mantilla, J., et al.: Detection of fibrosis in late gadolinium enhancement cardiac MRI using kernel dictionary learning-based clustering. In: Computing in Cardiology Conference (CinC), pp. 357–360 (2015)

    Google Scholar 

  16. Narula, S., et al.: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J. Am. Coll. Cardiol. 68(21), 2287–95 (2016)

    Article  Google Scholar 

  17. Soriano, C., et al.: Noninvasive diagnosis of coronary artery disease in patients with heart failure and systolic dysfunction of uncertain etiology using late gadolinium-enhanced cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 45(5), 743–48 (2005)

    Article  Google Scholar 

  18. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  19. Weinsaft, J., Klem, I., Judd, R.: MRI for the assessment of myocardial viability. Cardiol. Clin. 25(1), 35–36 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wellcome/EPSRC Centre for Medical Engineering [WT 203148/Z/16/Z] and the British Heart Foundation Centre of Research Excellence at Imperial College London [RE/18/4/34215].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta Varela or Teresa M. Correia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lourenço, A., Kerfoot, E., Grigorescu, I., Scannell, C.M., Varela, M., Correia, T.M. (2021). Automatic Myocardial Disease Prediction from Delayed-Enhancement Cardiac MRI and Clinical Information. In: Puyol Anton, E., et al. Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges. STACOM 2020. Lecture Notes in Computer Science(), vol 12592. Springer, Cham. https://doi.org/10.1007/978-3-030-68107-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68107-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68106-7

  • Online ISBN: 978-3-030-68107-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics