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Abstract. Delayed-enhancement cardiac magnetic resonance (DE-CMR)
provides important diagnostic and prognostic information on myocardial
viability. The presence and extent of late gadolinium enhancement (LGE)
in DE-CMR is negatively associated with the probability of improvement
in left ventricular function after revascularization. Moreover, LGE find-
ings can support the diagnosis of several other cardiomyopathies, but its
absence does not rule them out, making disease classification by visual
assessment difficult. In this work, we propose deep learning neural net-
works that can automatically predict myocardial disease from patient
clinical information and DE-CMR. All the proposed networks achieve
very good classification accuracy (>85%). Including information from
DE-CMR (directly as images or as metadata following DE-CMR seg-
mentation) is valuable in this classification task, improving the accuracy
to 95-100%.

Keywords: Cardiac MRI · Late Gadolinium Enhancement · Myocardial
Infarction · Classification

1 Introduction

Delayed-enhancement cardiac magnetic resonance (DE-CMR) is considered the
non-invasive gold standard for assessing myocardial infarction and viability in
coronary artery disease [3,5,19] and can help differentiate ischemic from non-
ischemic myocardial diseases [10]. DE-CMR images are typically acquired 10-15
minutes after an intravenous injection of a gadolinium-based contrast agent. The
contrast agent is washed-out by normal tissue, but in regions with scar or fibrotic
tissue, contrast washout is delayed, making nonviable regions appear bright in
T1-weighted images. The presence and extent of late gadolinium enhancement
(LGE) within the left ventricular (LV) myocardium provides important diagnos-
tic and prognostic information, including the risk of an adverse cardiac event and
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response to therapeutic strategies such as revascularization [9,7,2,6]. Moreover,
dark no-reflow regions (or microvascular obstruction) have been associated with
worse clinical outcomes.

Absence of LGE does not, however, rule out the presence of myocardial dis-
ease, since patients with, for example, extensive hibernating myocardium, hy-
pertrophic cardiomyopathy, sarcoidosis or myocarditis may not show contrast
uptake [17,10,12]. This makes disease classification from DE-CMR a complex
task. Therefore, DE-CMR is often combined with other CMR sequences, such as
T1 and T2 maps, to better characterize myocardial tissue alterations in various
cardiomyopathies [10].

Machine learning classification algorithms, such as support vector machines
[16], random forests [4] and K-nearest neighbour [15], have been used to predict
the presence/absence of cardiovascular disease. These techniques require, how-
ever, complex feature extraction procedures and domain expertise to create good
inputs for the classifier. On the other hand, deep learning architectures have the
ability to learn features directly from the data and hence reduce the need for
domain expertise and dedicated feature extraction [13].

In this work, we propose fully automatic neural networks (NNs) that per-
form binary classification for predicting normal vs pathological cases consider-
ing: 1) patient clinical information only (Clinic-NET), 2) clinical information
and DE-CMR images (DOC-NET). We additionally considered whether includ-
ing text-based information from independent DE-CMR segmentations could aid
the classification task (Clinic-NET+ and DOC-NET+).

2 Methods

Clinical Images and Metadata The networks were trained and tested on the
EMIDEC STACOM 2020 challenge dataset [11], comprising 100 cases: 33 cases
with normal CMR and 67 pathological cases. For each case, Phase Sensitive
Inversion Recovery (PSIR) DE-CMR images (consisting of 5-10 short-axis (SA)
slices covering the left ventricle) and 12 clinical discrete or continuous variables
were provided. Clinical information included sex, age, tobacco (Y/N/Former
smoker), overweight (BMI > 25), arterial hypertension (Y/N), diabetes (Y/N),
familial history of coronary artery disease (Y/N), ECG (ST+ (STEMI) or not),
troponin (value), Killip max (1 - 4), ejection fraction of the left ventricle from
echography (value), and NTproBNP (value). More details can be found in [1,11].

Image Preprocessing DE-CMR images had variable dimensions and were zero
padded along the z direction, when necessary, to obtain 10 slices. To remove
anatomical structures unrelated to the left ventricle, they were further cropped
in plane to a matrix of 128 x 128, whose centre was the centroid of the the LV
blood pool segmentation label.

In the absence of ground truth segmentation labels, we propose a NN-based
method to automatically perform image cropping and segmentation, as detailed
below.
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DE-CMR segmentation A two-step approach based on NNs is proposed to
automatically segment DE-CMR images into 3 classes (LV, healthy myocardium
and LGE uptake area) and extract their volumes as additional inputs to Clinic-
NET+ and DOC-NET+. These NNs are based on the 2D U-Net architecture
[8,14] and were trained separately on the EMIDEC dataset. The first NN was
trained with the Dice loss function to identify the LV centre by segmenting
the LV blood pool region and calculating the LV centroid coordinates. Then, the
cropped images were sent to a second NN, which was trained with the generalized
Dice loss function [18] for LV, normal myocardium and scar segmentation.

Data augmentation A number of randomly-chosen data augmentation func-
tions was applied to each DE-CMR volume. These replicate some of the expected
variation in real images without modifying the cardiac features of interest and
include: 1) image rotations and flips; 2) additional cropping of the images; 3) ad-
ditive stochastic noise; 4) k-space corruption; 5) smooth non-rigid deformations
using free-form deformations and 6) intensity and contrast scaling.

Neural Networks for myocardial disease prediction Two classification
methods are proposed: 1) Clinic-NET, classification based on clinical information
only and 2) DOC-NET, classification based on DE-CMR and Other Clinical
information. As explained below, both of these NNs are further compared to
other two networks that use information from previously segmented DE-CMR
as further metadata inputs: Clinic-NET+ and DOC-NET+.

The classification networks were trained using a cross-entropy loss function
and the Adam optimizer with a learning rate of 0.00001. We randomly divided
the provided 100 cases into 3 datasets for: training (70 cases), validation (10
cases) and test (20 cases). Training was performed for 170 iterations. These
hyperparameters were chosen after careful empirical tests.

To assess the quality of each network, we calculated the classification’s accu-
racy, specificity and sensitivity on the 20-case test dataset.

Clinic-NET Clinic-NET takes the 12 provided metadata variables as inputs to
a classification NN with 3 fully connected (fc) layers, which sequentially encode
information in fc1 = 20, fc2 = 30, fc3 = 10 and 2 units, as shown in Figure 1b.
Parametric Rectified Linear Units (PReLu) are applied to the outputs of the
first three layers.

DOC-NET DOC-NET combines features extracted from DE-CMR images and
features calculated from metadata to perform the final classification. The image
feature extraction network consisted of seven layers: 1) 3D convolutions with
3x3x3 kernels, a stride of 2 and a variable number of channels (4, 8, 16, 32,
64, 16, 8); 2) instance layer-normalization; 3) dropout (20% probability of being
dropped out) and 4) PReLU activation (see Fig 1a). The image feature vector
was then flattened into an 8-element array and concatenated with the 12-variable
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Fig. 1. DOC-NET classification network: a) image feature vectors, obtained from
the last convolutional layer of an image feature extraction network, are concatenated
with the metadata vector (M) and b) sent through four fully connected (fc) layers.

metadata. This combined vector was then the input to a fully connected NN
similar to Clinic-Net (see Fig. 1b). The sizes of the 3 fully connected layers in
DOC-NET were rescaled to match the new input size, such that fc1 = 33, fc2 =
50, fc3 = 16.

Clinic-NET+ and DOC-NET+ To further explore the classification task,
we created additional metadata variables with the volumes of each of the seg-
mentation labels of the DE-CMR. These variables were concatenated with the
existing metadata and used as enhanced metadata inputs to the previously de-
scribed networks to create Clinic-NET+ and DOC-NET+. For this, we used the
volumes of the labels provided by the ground truth segmentations: 1) LV blood
pool, 2) healthy myocardium, 3) LGE uptake area and 4) no-reflow area.

We performed additional experiments to gauge whether Clinic-Net+ and
DOC-NET+ could still be deployed in more general circumstances in which
expert manual segmentations are not available. In these experiments, we used
the segmentation networks detailed above to automatically segment DE-CMR
into labels 1-3 and used the volume of each of these categories as enhanced
metadata for the classification NNs.

3 Results & Discussion

The best overall performance was jointly achieved by Clinic-NET+ and DOC-
NET+, both with an accuracy of 100%, followed by DOC-NET (accuracy: 95%)
and Clinic-NET (accuracy: 85%) - see Table 1. Our results suggest that the clin-
ical metadata information already includes very valuable information that can
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Table 1. Confusion matrix (actual vs predicted counts of pathological and normal
cases), accuracy, sensitivity and specificity obtained with the different classifica-
tion networks. The additional metadata used in Clinic-NET+ and DOC-NET+ was
extracted from the ground truth segmentations.

be leveraged by our proposed network, Clinic-NET, to classify subjects with an
accuracy of 85%. The accuracy is greatly increased, however, when information
from DE-CMR is also provided to the network.

DOC-NET+ and Clinic-NET+ both rely on information from existing high-
quality segmentations of DE-CMR performed manually by an expert or auto-
matically by a suitable segmentation approach, such as the one proposed here
(or from the EMIDEC DE-CMR segmentation challenge). We found that infor-
mation about the size of potential infarct areas (and also LV dimensions) is most
useful for the classification task. The excellent performance of Clinic-NET+ and
DOC-Net+ is likely due to the very high predictive value of the LGE zone seg-
mentation label, which was not present in any normal cases. We also investigated
how the performance of Clinic-NET+ and DOC-NET+ was affected by using vol-
umetric information from our proposed automatic segmentation method, which
did not segment the no-reflow area (label 4). The classification performance was
not affected, maintaining a 100% accuracy, as can be inferred from comparing
the last two columns of Table 1 with Table 2.

The proposed DE-CMR segmentation method can be particularly useful
when ground truth segmentations are not available, allowing to automatically
crop the region of interest and determine LV, healthy myocardium and LGE
enhancement volumes (Fig. 2). However, currently, the proposed method does
not segment the no-reflow area. For this particular classification task, the ab-
sence of this information did not affect the accuracy of the results. However,
including information about the presence and/or volume of the no-reflow area in
classification NNs may be particularly useful when predicting clinical outcomes
in patients with known or potential heart problems.

The excellent results obtained when incorporating information from DE-
CMR segmentations suggest that the performance of the image feature extractor
included in DOC-NET/DOC-NET+ may be further enhanced when its weights
are initialised with those from a well-trained segmentation network.

Our results were calculated in a very small dataset (20 test cases) and will
be validated in a larger number of cases in the future, including in patients with
undetected myocardial infarction on DE-MRI.
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Fig. 2. DE-CMR images and segmentations of the left ventricle, normal my-
ocardium and region of LGE uptake (if present) obtained with the proposed automatic
segmentation method for two slices from two representative subjects.

Table 2. Confusion matrix (actual vs predicted counts of pathological and normal
cases), accuracy, sensitivity and specificity obtained with the Clinic-NET+ and
DOC-NET+ classification networks. The additional metadata was extracted from the
automatic segmentation of DE-CMR images.

4 Conclusions

For the EMIDEC classification challenge, we propose Clinic-NET, a 4-layer fully-
connected NN which uses 12 clinical variables as an input and shows a very good
classification performance. An improved performance is obtained with DOC-
NET, which additionally includes DE-CMR images as inputs, which are pro-
cessed using 3D convolutional layers. Further performance improvements can be
obtained when providing DE-CMR information distilled as the volume of seg-
mentation labels, either from expert manual segmentations or from a proposed
segmentation NN.
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