Skip to main content

Features of Distributed Energy Integration in Agriculture

  • Conference paper
  • First Online:
Intelligent Computing and Optimization (ICO 2020)

Abstract

Agriculture is the guarantor of the sustainable development of the state as it supplies the population with basic necessities. Agricultural holdings and similar agricultural associations are distributed agricultural enterprises, each part of which requires reliable provision with the necessary types of energy. The article gives an understanding of the agroholdings and what problems exist in the implementation of distributed energy projects in agriculture. It also considers the options for the small generation facility structure on the example of biogas plants and their property issues. Various promising options for the use of individual and local small generation facilities in agroholdings are given listing facility types, scope of perspective application in the agroholding structure and expected key results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Epshtein, D., Hahlbrock, K., Wandel, J.: Why are agroholdings so pervasive in Russia’s Belgorod oblast’? Evidence from case studies and farm-level data. Post-Communist Econ. 25(1), 59–81 (2013)

    Article  Google Scholar 

  2. Vinogradov, A., Vinogradova, A., Bolshev, V., Psarev, A.I.: Sectionalizing and redundancy of the 0.38 kV ring electrical network: mathematical modeling schematic solutions. Int. J. Energy Optim. Eng. (IJEOE) 8(4), 15–38 (2019)

    Google Scholar 

  3. Vinogradov, A., Vasiliev, A., Bolshev, V., Vinogradova, A., Kudinova, T., Sorokin, N., Hruntovich, N.: Methods of reducing the power supply outage time of rural consumers. In: Kharchenko, V., Vasant, P. (eds.) Renewable Energy and Power Supply Challenges for Rural Regions, pp. 370–392. IGI Global (2019)

    Google Scholar 

  4. Tikhomirov, D.A., Kopylov, S.I.: An energy-efficient electric plant for hot steam and water supply of agricultural enterprises. Russ. Electr. Eng. 89(7), 437–440 (2018)

    Article  Google Scholar 

  5. Bolshev, V.E., Vinogradov, A.V.: Obzor zarubezhnyh istochnikov po infrastrukture intellektual'nyh schyotchikov [Overview of foreign sources on the infrastructure of smart meters]. Bull. South Ural State Univ. Ser. Energy 18(3), 5–13 (2018)

    Google Scholar 

  6. Sharma, K., Saini, L.M.: Performance analysis of smart metering for smart grid: an overview. Renew. Sustain. Energy Rev. 49, 720–735 (2015)

    Article  Google Scholar 

  7. Kabalci, Y.: A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 57, 302–318 (2016)

    Article  Google Scholar 

  8. Vinogradov, A.V., Anikutina, A.V.: Features in calculations for electric energy of consumers with a maximum power over 670 kW and a computer program for selecting the optimal price category [Osobennosti v raschetah za elektroenergiyu potrebitelej s maksimal’noj moshchnost’yu svyshe 670 kVt i komp’yuternaya programma dlya vybora optimal’noj cenovoj kategorii]. Innov. Agric. 2, 161–169 (2016)

    Google Scholar 

  9. Litti, Y., Kovalev, D., Kovalev, A., Katraeva, I., Russkova, Y., Nozhevnikova, A.: Increasing the efficiency of organic waste conversion into biogas by mechanical pretreatment in an electromagnetic mill. In: Journal of Physics: Conference Series, vol. 1111, no. 1 (2018)

    Google Scholar 

  10. Panchenko, V., Kharchenko, V., Vasant, P.: Modeling of solar photovoltaic thermal modules. In: Vasant, P., Zelinka, I., Weber, GW. (eds.) Intelligent Computing & Optimization. ICO 2018. Advances in Intelligent Systems and Computing, vol. 866. pp. 108–116. Springer, Cham (2019)

    Google Scholar 

  11. Daus, Y., Kharchenko, V.V., Yudaev, I.V.: Managing Spatial Orientation of Photovoltaic Module to Obtain the Maximum of Electric Power Generation at Preset Point of Time. Appl. Solar Energy 54(6), 400–405 (2018)

    Article  Google Scholar 

  12. Gladchenko, M.A., Kovalev, D.A., Kovalev, A.A., Litti, Y.V., Nozhevnikova, A.N.: Methane production by anaerobic digestion of organic waste from vegetable processing facilities. Appl. Biochem. Microbiol. 53(2), 242–249 (2017)

    Article  Google Scholar 

  13. Kovalev, A., Kovalev, D., Panchenko, V., Kharchenko, V., Vasant, P.: System of optimization of the combustion process of biogas for the biogas plant heat supply. In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) Intelligent Computing and Optimization. ICO 2019. Advances in Intelligent Systems and Computing, vol. 1072. Springer, Cham (2019)

    Google Scholar 

  14. Kharchenko, V., Gusarov, V., Bolshev, V.: Reliable electricity generation in RES-based microgrids. In: Alhelou, H.H., Hayek, G. (eds.) Handbook of Research on Smart Power System Operation and Control, pp. 162–187. IGI Global (2019)

    Google Scholar 

  15. Vinogradov, A., Bolshev, V., Vinogradova, A., Kudinova, T., Borodin, M., Selesneva, A., Sorokin, N.: A system for monitoring the number and duration of power outages and power quality in 0.38 kV electrical networks. In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) Intelligent Computing & Optimization. ICO 2018. Advances in Intelligent Systems and Computing, vol. 866, p. 10. Springer, Cham (2019)

    Google Scholar 

  16. Vinogradov, A., Vasiliev, A., Bolshev, V., Semenov, A., Borodin, M.: Time factor for determination of power supply system efficiency of rural consumers. In: Kharchenko, V., Vasant, P. (eds.) Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development, pp. 394–420. IGI Global (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim E. Bolshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinogradov, A.V. et al. (2021). Features of Distributed Energy Integration in Agriculture. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham. https://doi.org/10.1007/978-3-030-68154-8_2

Download citation

Publish with us

Policies and ethics