Skip to main content

Concept of Multi-contact Switching System

  • Conference paper
  • First Online:
Intelligent Computing and Optimization (ICO 2020)

Abstract

The paper proposes a new approach to the construction of intelligent electrical networks. It is based on the use of the multi-contact switching system - switching devices having 3 or more contact groups and the control of them is carried out independently. The paper also states the main provisions of this approach. There is an example of a distribution electrical network on the basis of the multi-contact switching system and containing a transformer substation, several renewable energy sources and various types of switching equipment. The basic functions of the network are listed based on the processing of the received data, the interaction of network equipment and systems of monitoring, control, accounting and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Litti, Y., Kovalev, D., Kovalev, A., Katraeva, I., Russkova, Y., Nozhevnikova, A.: Increasing the efficiency of organic waste conversion into biogas by mechanical pretreatment in an electromagnetic mill. In: Journal of Physics: Conference Series, vol. 1111, no. 1 (2018)

    Google Scholar 

  2. Panchenko, V., Kharchenko, V., Vasant, P.: Modeling of solar photovoltaic thermal modules. In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) Intelligent Computing & Optimization. ICO 2018. Advances in Intelligent Systems and Computing, vol. 866. pp. 108–116. Springer, Cham (2019)

    Google Scholar 

  3. Daus, Y., Kharchenko, V.V., Yudaev, I.V.: Managing spatial orientation of photovoltaic module to obtain the maximum of electric power generation at preset point of time. Appl. Solar Energy 54(6), 400–405 (2018)

    Article  Google Scholar 

  4. Kharchenko, V., Gusarov, V., Bolshev, V.: Reliable electricity generation in RES-based microgrids. In: Alhelou, H.H., Hayek, G. (eds.) Handbook of Research on Smart Power System Operation and Control, pp. 162–187. IGI Global (2019)

    Google Scholar 

  5. Vinogradov, A.V., Vinogradova, A.V., Bolshev, V.Ye., Lansberg, A.A.: Sposob kodirovaniya situacij v elektricheskoj seti, soderzhashchej mul'tikontaktnye kommutacionnye sistemy i vozobnovlyaemye istochniki energii [A way of coding situations in an electric network containing multi-contact switching systems and renewable energy sources]. Bull. Agric. Sci. Don 2(46), 68–76 (2019)

    Google Scholar 

  6. Vinogradov, A.V., Vinogradova, A.V., Marin, A.A.: Primenenie mul’tikontaktnyh kommutacionnyh sistem s mostovoj skhemoj i chetyr’mya vyvodami v skhemah elektrosnabzheniya potrebitelej i kodirovanie voznikayushchih pri etom situacij [Application of multi-contact switching systems with a bridge circuit and four outputs in consumer power supply circuits and coding of situations arising from this]. Bull. NIIEI 3(94), 41–50 (2019)

    Google Scholar 

  7. Vinogradov, A., Vasiliev, A., Bolshev, V., Vinogradova, A., Kudinova, T., Sorokin, N., Hruntovich, N.: Methods of reducing the power supply outage time of rural consumers. In: Kharchenko, V., Vasant, P. (eds.) Renewable Energy and Power Supply Challenges for Rural Regions, pp. 370–392. IGI Global (2019)

    Google Scholar 

  8. Bolshev, V.E., Vinogradov, A.V.: Perspektivnye kommunikacionnye tekhnologii dlya avtomatizacii setej elektrosnabzheniya [Promising communication technologies for automation of power supply networks]. Bull. Kazan State Power Eng. Univ. 11(2), 65–82 (2019)

    Google Scholar 

  9. Ancillotti, E., Bruno, R., Conti, M.: The role of communication systems in smart grids: architectures, technical solutions and research challenges. Commun. Technol. 36, 1665–1697 (2013)

    Google Scholar 

  10. Khan, R.H., Khan, J.Y.: A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Comput. Netw. 57, 825–845 (2013)

    Article  Google Scholar 

  11. Vinogradov, A., Bolshev, V., Vinogradova, A., Kudinova, T., Borodin, M., Selesneva, A., Sorokin, N.: A system for monitoring the number and duration of power outages and power quality in 0.38 kV electrical networks. In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) Intelligent Computing & Optimization. ICO 2018. Advances in Intelligent Systems and Computing, vol. 866, p. 10. Springer, Cham (2019)

    Google Scholar 

  12. Vinogradov, A., Vasiliev, A., Bolshev, V., Semenov, A., Borodin, M.: Time factor for determination of power supply system efficiency of rural consumers. In: Kharchenko, V., Vasant, P. (eds.) Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development, pp. 394–420. IGI Global (2018)

    Google Scholar 

  13. Abiri-Jahromi, A., Fotuhi-Firuzabad, M., Parvania, M., Mosleh, M.: Optimized sectionalizing switch placement strategy in distribution systems. IEEE Trans. Power Deliv. 27(1), 362–370 (2011)

    Article  Google Scholar 

  14. Singh, B., Saha, R., Chandra, A., Al-Haddad, K.: Static synchronous compensators (STATCOM): a review. IET Power Electron. 2(4), 297–324 (2009)

    Article  Google Scholar 

  15. Haque, M.H.: Compensation of distribution system voltage sag by DVR and D-STATCOM. In: 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), vol. 1. IEEE (2001)

    Google Scholar 

  16. Bolshev, V.E., Vinogradov, A.V.: Obzor zarubezhnyh istochnikov po infrastrukture intellektual'nyh schyotchikov [Overview of foreign sources on the infrastructure of smart meters]. Bull. South Ural State Univ. Ser. Energy 18(3), 5–13 (2018)

    Google Scholar 

  17. Sharma, K., Saini, L.M.: Performance analysis of smart metering for smart grid: an overview. Renew. Sustain. Energy Rev. 49, 720–735 (2015)

    Article  Google Scholar 

  18. Kabalci, Y.: A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 57, 302–318 (2016)

    Article  Google Scholar 

  19. Vinogradov, A., Borodin, M., Bolshev, V., Makhiyanova, N., Hruntovich, N.: Improving the power quality of rural consumers by means of electricity cost adjustment. In: Kharchenko, V., Vasant, P. (eds.) Renewable Energy and Power Supply Challenges for Rural Regions, pp. 31–341. IGI Global (2019)

    Google Scholar 

  20. Vinogradov, A., Vinogradova, A., Bolshev, V., Psarev, A.I.: Sectionalizing and redundancy of the 0.38 kV ring electrical network: mathematical modeling schematic solutions. Int. J. Energy Optim. Eng. (IJEOE) 8(4), 15–38 (2019)

    Google Scholar 

  21. Vinogradov, A., Vinogradova, A., Golikov, I., Bolshev, V.: Adaptive automatic voltage regulation in rural 0:38 kV electrical networks. Int. J. Emerg. Electric Power Syst. 20(3) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim E. Bolshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinogradov, A.V. et al. (2021). Concept of Multi-contact Switching System. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham. https://doi.org/10.1007/978-3-030-68154-8_3

Download citation

Publish with us

Policies and ethics