Skip to main content

Modeling of Aluminum Profile Extrusion Yield: Pre-cut Billet Sizes

  • Conference paper
  • First Online:
Intelligent Computing and Optimization (ICO 2020)

Abstract

In some manufacturing industries, starting raw material size is critical to determining how much material will be scrapped by the end of a process. Process planners working in aluminum profile extrusion industry, for example, need to select appropriate aluminum billet sizes to be extruded to meet specific customer orders while minimizing resulting scraps. In this research, extrusion process is classified according to how billets are extruded, namely multiple extrusions per billet and multiple billets per extrusion. Mass balance equations for each configuration are used to formulate a yield optimization problem where billets are pre-cut to specific sizes and kept in stock. Both models are non-linear and discrete. The solution procedure is developed using an enumeration technique to identify the optimal solution. It is validated with extrusion data from an industrial company. Its effectiveness is demonstrated using various case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grand View Research. https://www.grandviewresearch.com/industry-analysis/aluminum-extrusion-market.

  2. Tabucanon, M.T., Treewannakul, T.: Scrap reduction in the extrusion process: the case of an aluminium production system. Appl. Math. Modelling 11, 141–145 (1987). https://doi.org/10.1016/0307-904X(87)90158-2

    Article  Google Scholar 

  3. Masri, K., Warburton, A.: Optimizing the yield of an extrusion process in the aluminum industry. In: Tamiz, M. (ed.) Multi-Objective Programming and Goal Programming. LNE, vol. 432, pp. 107–115. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-642-87561-8_9

  4. Masri, K., Warburton, A.: Using optimization to improve the yield of an aluminum extrusion plant. J. Oper. Res. Socy. 49(11), 1111–1116 (1998). https://doi.org/10.1057/palgrave.jors.2600616

    Article  MATH  Google Scholar 

  5. Hajeeh, M.A.: Optimizing an aluminum extrusion process. J. Math. Stat. 9(2), 77–83 (2013). https://doi.org/10.3844/jmssp.2013.77.83

    Article  Google Scholar 

  6. Reggiani, B., Segatori, A., Donati, L., Tomesani, L.: Prediction of charge welds in hollow profiles extrusion by FEM simulations and experimental validation. Intl. J. Adv. Manuf. Technol 69, 1855–1872 (2013). https://doi.org/10.1007/s00170-013-5143-2

    Article  Google Scholar 

  7. Oza, V.G., Gotowala, B.: Analysis and optimization of extrusion process using Hyperworks. Int. J. Sci. Res. Dev. 2(8), 441–444 (2014)

    Google Scholar 

  8. Ferras, A.F., Almeida, F. De, Silva, E. C, Correia, A., Silva, F.J.G.: Scrap production of extruded aluminum alloys by direct extrusion. Procedia Manufacturing, 38, 1731–1740 (2019). https://doi.org/10.1016/j.promfg.2020.01.100

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaramporn Hassamontr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassamontr, J., Leephaicharoen, T. (2021). Modeling of Aluminum Profile Extrusion Yield: Pre-cut Billet Sizes. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham. https://doi.org/10.1007/978-3-030-68154-8_41

Download citation

Publish with us

Policies and ethics