Skip to main content

Modeling of Bilateral Photoreceiver of the Concentrator Photovoltaic Thermal Module

  • Conference paper
  • First Online:
Intelligent Computing and Optimization (ICO 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1324))

Included in the following conference series:

  • 1016 Accesses

Abstract

The paper describes the modeling of the thermal state and visualization of the operating mode of the bilateral photoreceiver of the concentrator photovoltaic thermal solar module. Based on the results obtained during the simulation, the geometric parameters of the components of the photoreceiver of the solar module are substantiated and selected. The developed design of the solar module will provide high electrical and thermal efficiency of the solar module. These types of concentrator photovoltaic thermal solar modules can operate autonomously or in parallel with the existing power grid to power consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buonomano, A., Calise, F., Vicidimini, M.: Design, simulation and experimental investigation of a solar system based on PV panels and PVT collectors. Energies 9, 497 (2016)

    Article  Google Scholar 

  2. Ibrahim, A., Othman, M.Y., Ruslan, M.H., Mat, S., Sopian, K.: Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew. Sustain. Energy Rev. 15, 352–365 (2011)

    Article  Google Scholar 

  3. Kemmoku, Y., Araki, K., Oke, S.: Long-term perfomance estimation of a 500X concentrator photovoltaic system. In: 30th ISES Biennial Solar World Congress 2011, 710–716 (2011)

    Google Scholar 

  4. Nesterenkov, P., Kharchenko, V.: Thermo physical principles of cogeneration technology with concentration of solar radiation. Adv. Intell. Syst. Comput. 866, 117–128 (2019). https://doi.org/10.1007/978-3-030-00979-3_12

    Article  Google Scholar 

  5. Rawat, P., Debbarma, M., Mehrotra, S., et al.: Design, development and experimental investigation of solar photovoltaic/thermal (PV/T) water collector system. Int. J. Sci. Environ. Technol. 3(3), 1173–1183 (2014)

    Google Scholar 

  6. Sevela, P., Olesen, B.W.: Development and benefits of using PVT compared to PV. Sunstain. Build. Technol. 4, 90–97 (2013)

    Google Scholar 

  7. Kharchenko, V., Nikitin, B., Tikhonov, P., Panchenko, V., Vasant, P.: Evaluation of the silicon solar cell modules. In: Intelligent Computing & Optimization. Advances in Intelligent Systems and Computing, vol. 866, pp. 328–336 (2019). https://doi.org/10.1007/978-3-030-00979-3_34

  8. Panchenko, V.: Photovoltaic solar modules for autonomous heat and power supply. IOP Conf. Ser. Earth Environ. Sci. 317 9 p. https://doi.org/10.1088/1755-1315/317/1/012002.

  9. Panchenko, V., Izmailov, A., Kharchenko, V., Lobachevskiy, Y.: Photovoltaic solar modules of different types and designs for energy supply. Int. J. Energy Optim. Eng. 9(2), 74–94. https://doi.org/10.4018/IJEOE.2020040106.

  10. Panchenko, V.A.: Solar roof panels for electric and thermal generation. Appl. Solar Energy 54(5), 350–353 (2018). https://doi.org/10.3103/S0003701X18050146

    Article  Google Scholar 

  11. Kharchenko, V., Panchenko, V., Tikhonov, P., Vasant, P.: Cogenerative PV thermal modules of different design for autonomous heat and electricity supply. In: Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development, pp. 86–119. https://doi.org/10.4018/978-1-5225-3867-7.ch004

  12. Sinitsyn, S., Panchenko, V., Kharchenko, V., Vasant, P.: Optimization of parquetting of the concentrator of photovoltaic thermal module. In: Intelligent Computing & Optimization. Advances in Intelligent Systems and Computing, vol. 1072, pp. 160–169 (2020). https://doi.org/10.1007/978-3-030-33585-4_16

  13. Panchenko, V., Kharchenko, V., Vasant, P.: Modeling of solar photovoltaic thermal modules. In: Intelligent Computing & Optimization. Advances in Intelligent Systems and Computing, vol. 866, pp. 108–116 (2019). https://doi.org/10.1007/978-3-030-00979-3_11

  14. Panchenko, V., Chirskiy, S., Kharchenko, V.V.: Application of the software system of finite element analysis for the simulation and design optimization of solar photovoltaic thermal modules. In: Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering, pp. 106–131 https://doi.org/10.4018/978-1-7998-1216-6.ch005

Download references

Acknowledgment

The research was carried out on the basis of financing the state assignments of the All-Russian Institute of the Electrification of Agriculture and the Federal Scientific Agroengineering Center VIM, on the basis of funding of the grant “Young lecturer of RUT” of the Russian University of Transport, on the basis of funding of the Scholarship of the President of the Russian Federation for young scientists and graduate students engaged in advanced research and development in priority areas of modernization of the Russian economy, direction of modernization: “Energy efficiency and energy saving, including the development of new fuels”, subject of scientific research: “Development and research of solar photovoltaic thermal modules of planar and concentrator structures for stationary and mobile power generation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Panchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panchenko, V., Chirskiy, S., Kovalev, A., Banik, A. (2021). Modeling of Bilateral Photoreceiver of the Concentrator Photovoltaic Thermal Module. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham. https://doi.org/10.1007/978-3-030-68154-8_8

Download citation

Publish with us

Policies and ethics