Skip to main content

On Compatible Matchings

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2021)

Abstract

A matching is compatible to two or more labeled point sets of size n with labels \(\{1,\dots ,n\}\) if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with \(\lfloor \sqrt{2n}\rfloor \) edges. More generally, for any \(\ell \) labeled point sets we construct compatible matchings of size \(\varOmega (n^{1/\ell })\). As a corresponding upper bound, we use probabilistic arguments to show that for any \(\ell \) given sets of n points there exists a labeling of each set such that the largest compatible matching has \(\mathcal {O}(n^{2/(\ell +1)})\) edges. Finally, we show that \(\varTheta (\log n)\) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge.

A.A. funded by the Marie Skłodowska-Curie grant agreement No. 754411. Z.M. partially funded by Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31. I.P., D.P., and B.V. partially supported by FWF within the collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35. A.P. supported by a Schrödinger fellowship of the FWF: J-3847-N35. J.T. partially supported by ERC Start grant no. (279307: Graph Games), FWF grant no. P23499-N23 and S11407-N23 (RiSE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The combinatorial embedding fixes the cyclic order of incident edges for each vertex.

  2. 2.

    https://www.imo-official.org/problems/IMO2017SL.pdf, Problem C4.

  3. 3.

    Two edges are independent if they do not share an endpoint.

References

  1. Ábrego, B.M., Fernández-Merchant, S., Leaños, J., Salazar, G.: A central approach to bound the number of crossings in a generalized configuration. In: LAGOS2007, pp. 273–278. ENDM (2007)

    Google Scholar 

  2. Ábrego, B.M., Fernández-Merchant, S., Salazar, G.: The rectilinear crossing number of \({K}_n\): closing in (or are we?). In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 5–18. Springer (2013). https://doi.org/10.1007/978-1-4614-0110-0_2

  3. Aichholzer, O., Aurenhammer, F., Hurtado, F., Krasser, H.: Towards compatible triangulations. TCS 296(1), 3–13 (2003)

    Article  MathSciNet  Google Scholar 

  4. Aichholzer, O., Barba, L., Hackl, T., Pilz, A., Vogtenhuber, B.: Linear transformation distance for bichromatic matchings. CGTA 68, 77–88 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Aichholzer, O., et al.: Compatible geometric matchings. CGTA 42(6–7), 617–626 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Aichholzer, O., Duque, F., Fabila-Monroy, R., Hidalgo-Toscano, C., García-Quintero, O.E.: An ongoing project to improve the rectilinear and the pseudolinear crossing constants. ArXiv e-Prints (2020)

    Google Scholar 

  7. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput. 46(2), 824–852 (2017)

    Article  MathSciNet  Google Scholar 

  8. Aloupis, G., Barba, L., Langerman, S., Souvaine, D.: Bichromatic compatible matchings. CGTA 48(8), 622–633 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Aronov, B., Seidel, R., Souvaine, D.: On compatible triangulations of simple polygons. CGTA 3, 27–35 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Arseneva, E., et al.: Compatible paths on labelled point sets. In: CCCG 2018, pp. 54–60 (2020)

    Google Scholar 

  11. Babikov, M., Souvaine, D.L., Wenger, R.: Constructing piecewise linear homeomorphisms of polygons with holes. In: CCCG 1997 (1997)

    Google Scholar 

  12. Baxter III, W.V., Barla, P., Anjyo, K.: Compatible embedding for 2D shape animation. IEEE Trans. Vis. Comput. Graph. 15(5), 867–879 (2009)

    Article  Google Scholar 

  13. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways for your mathematical plays, vol. 1, 2 edn. A. K. Peters Ltd. (2001)

    Google Scholar 

  14. Czabarka, É., Wang, Z.: Erdő-Szekeres theorem for cyclic permutations. Involve J. Math. 12(2), 351–360 (2019)

    Article  Google Scholar 

  15. Czyzowicz, J., Kranakis, E., Krizanc, D., Urrutia, J.: Maximal length common non-intersecting paths. In: CCCG 1996, pp. 185–189 (1996)

    Google Scholar 

  16. Erten, C., Kobourov, S.G., Pitta, C.: Intersection-free morphing of planar graphs. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 320–331. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_30

    Chapter  Google Scholar 

  17. Floater, M.S., Gotsman, C.: How to morph tilings injectively. JCAM 101, 117–129 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Hui, P., Schaefer, M.: Paired pointset traversal. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 534–544. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30551-4_47

    Chapter  Google Scholar 

  19. Ishaque, M., Souvaine, D.L., Tóth, C.D.: Disjoint compatible geometric matchings. DCG 49, 89–131 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Krasser, H.: Kompatible Triangulierungen ebener Punktmengen. Master’s thesis, Graz University of Technology (1999)

    Google Scholar 

  21. Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algorithmica 16(1), 111–117 (1996)

    Article  MathSciNet  Google Scholar 

  22. Saalfeld, A.: Joint triangulations and triangulation maps. In: SoCG 1987, pp. 195–204 (1987)

    Google Scholar 

  23. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. E-JC18(1) (2011)

    Google Scholar 

  24. Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn’s technique. JCTA 120(4), 777–794 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Perz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aichholzer, O. et al. (2021). On Compatible Matchings. In: Uehara, R., Hong, SH., Nandy, S.C. (eds) WALCOM: Algorithms and Computation. WALCOM 2021. Lecture Notes in Computer Science(), vol 12635. Springer, Cham. https://doi.org/10.1007/978-3-030-68211-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68211-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68210-1

  • Online ISBN: 978-3-030-68211-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics