Skip to main content

Challenges from Fast Camera Motion and Image Blur: Dataset and Evaluation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12539))

Included in the following conference series:

Abstract

To study the impact of the camera motion speed for image/video based tasks, we propose an extendable synthetic dataset based on real image sequences. In our dataset, image sequences with different camera speeds featuring the same scene and the same camera trajectory. To synthesize a photo-realistic image sequence with fast camera motions, we propose an image blur synthesis method that generates blurry images by their sharp images, camera motions and the reconstructed 3D scene model. Experiments show that our synthetic blurry images are more realistic than the ones synthesized by existing methods. Based on our synthetic dataset, one can study the performance of an algorithm in different camera motions. In this paper, we evaluate several mainstream methods of two relevant tasks: visual SLAM and image deblurring. Through our evaluations, we draw some conclusions about the robustness of these methods in the face of different camera speeds and image motion blur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor fusion IV: control paradigms and data structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  2. Burri, M., et al.: The euroc micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016)

    Article  Google Scholar 

  3. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  4. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion: Real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. (ToG) 36(3), 24 (2017)

    Article  Google Scholar 

  5. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)

    Article  Google Scholar 

  6. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  7. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM SIGGRAPH 2006 Papers, pp. 787–794 (2006)

    Google Scholar 

  8. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: 2014 IEEE international Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)

    Google Scholar 

  9. Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vis. 94(3), 335–360 (2011)

    Article  Google Scholar 

  10. Handa, A., Newcombe, R.A., Angeli, A., Davison, A.J.: Real-time camera tracking: when is high frame-rate best? In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 222–235. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_17

    Chapter  Google Scholar 

  11. Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: IEEE International Conference on Robotics and Automation, ICRA, Hong Kong, China, May 2014

    Google Scholar 

  12. Kahler, O., Prisacariu, V.A., Ren, C.Y., Sun, X., Torr, P.H.S., Murray, D.W.: Very high frame rate volumetric integration of depth images on mobile device. IEEE Trans. Vis. Comput. Graph. 22(11), 1241–1250 (2015)

    Article  Google Scholar 

  13. Kim, T.H., Lee, K.M.: Segmentation-free dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2766–2773 (2014)

    Google Scholar 

  14. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR 2011, pp. 233–240. IEEE (2011)

    Google Scholar 

  15. Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N., Yang, M.H.: A comparative study for single image blind deblurring. In: IEEE Conferene on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  16. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971. IEEE (2009)

    Google Scholar 

  17. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR 2011, pp. 2657–2664. IEEE (2011)

    Google Scholar 

  18. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  19. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  20. Noroozi, M., Chandramouli, P., Favaro, P.: Motion deblurring in the wild. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 65–77. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66709-6_6

    Chapter  Google Scholar 

  21. Qin, T., Li, P., Shen, S.: VINS-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Rob. 34(4), 1004–1020 (2018)

    Article  Google Scholar 

  22. Sellent, A., Rother, C., Roth, S.: Stereo video deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 558–575. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_35

    Chapter  Google Scholar 

  23. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (TOG) 27(3), 1–10 (2008)

    Article  Google Scholar 

  24. Shen, Z., et al.: Human-aware motion deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5572–5581 (2019)

    Google Scholar 

  25. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: Proceedings of of the International Conference on Intelligent Robot Systems (IROS), October 2012

    Google Scholar 

  26. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1279–1288 (2017)

    Google Scholar 

  27. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)

    Google Scholar 

  28. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–8. IEEE (2013)

    Google Scholar 

  29. Whelan, T., Salas-Moreno, R.F., Glocker, B., Davison, A.J., Leutenegger, S.: ElasticFusion: real-time dense slam and light source estimation. Int. J. Robot. Res. 35(14), 1697–1716 (2016)

    Article  Google Scholar 

  30. Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int. J. Comput. Vis. 98(2), 168–186 (2012)

    Article  MathSciNet  Google Scholar 

  31. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: European Conference on Computer Vision, pp. 236–252. Springer (2014)

    Google Scholar 

  32. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)

    Google Scholar 

  33. Zhu, Z., Xu, F., Yan, C., Hao, X., Ji, X., Zhang, Y., Dai, Q.: Real-time indoor scene reconstruction with RGBD and inertial input. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 7–12. IEEE (2019)

    Google Scholar 

Download references

Acknowledgement

Thiswork was funded by National Science Foundation of China (61931008, 61671196, 61701149, 61801157, 61971268, 61901145, 61901150, 61972123), National Science Major Foundation of Research Instrumentation of PR China under Grants 61427808, Zhejiang Province NatureScienceFoundationofChina (R17F030006, Q19F010030), Higher Education Discipline Innovation Project 111 Project D17019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Xu or Chenggang Yan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 113 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Z., Xu, F., Li, M., Wang, Z., Yan, C. (2020). Challenges from Fast Camera Motion and Image Blur: Dataset and Evaluation. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12539. Springer, Cham. https://doi.org/10.1007/978-3-030-68238-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68238-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68237-8

  • Online ISBN: 978-3-030-68238-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics