Abstract
Deep neural networks have been shown to be susceptible to adversarial examples – small, imperceptible changes constructed to cause mis-classification in otherwise highly accurate image classifiers. As a practical alternative, recent work proposed so-called adversarial patches: clearly visible, but adversarially crafted rectangular patches in images. These patches can easily be printed and applied in the physical world. While defenses against imperceptible adversarial examples have been studied extensively, robustness against adversarial patches is poorly understood. In this work, we first devise a practical approach to obtain adversarial patches while actively optimizing their location within the image. Then, we apply adversarial training on these location-optimized adversarial patches and demonstrate significantly improved robustness on CIFAR10 and GTSRB. Additionally, in contrast to adversarial training on imperceptible adversarial examples, our adversarial patch training does not reduce accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)
Alaifari, R., Alberti, G.S., Gauksson, T.: ADef: an iterative algorithm to construct adversarial deformations. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Hk4dFjR5K7
Alayrac, J.B., Uesato, J., Huang, P.S., Fawzi, A., Stanforth, R., Kohli, P.: Are labels required for improving adversarial robustness? In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 12214–12223. Curran Associates, Inc. (2019). http://papers.nips.cc/paper/9388-are-labels-required-for-improving-adversarial-robustness.pdf
Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-efficient black-box adversarial attack via random search. arXiv: 1912.00049 (2019)
Athalye, A., Carlini, N.: On the robustness of the CVPR 2018 white-box adversarial example defenses. arXiv: 1804.03286 (2018)
Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. In: Proceedings of Machine Learning Research, vol. 80, pp. 274–283. PMLR, Stockholmsmässan, Stockholm Sweden, 10–15 July 2018. http://proceedings.mlr.press/v80/athalye18a.html
Bafna, M., Murtagh, J., Vyas, N.: Thwarting adversarial examples: an L\_0-robust sparse fourier transform. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 10075–10085. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/8211-thwarting-adversarial-examples-an-l_0-robust-sparse-fourier-transform.pdf
Balaji, Y., Goldstein, T., Hoffman, J.: Instance adaptive adversarial training: improved accuracy tradeoffs in neural nets. arXiv:1910.08051 (2019)
Bhagoji, A.N., He, W., Li, B., Song, D.: Exploring the space of black-box attacks on deep neural networks. arXiv: 1712.09491 (2017)
Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recogn. 84, 317–331 (2018). https://doi.org/10.1016/j.patcog.2018.07.023, http://www.sciencedirect.com/science/article/pii/S0031320318302565
Brendel, W., Bethge, M.: Comment on “biologically inspired protection of deep networks from adversarial attacks”. arXiv: 1704.01547 (2017)
Brown, T.B., Carlini, N., Zhang, C., Olsson, C., Christiano, P., Goodfellow, I.: Unrestricted adversarial examples. arXiv: 1809.08352 (2017)
Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch. arXiv: 1712.09665 (2017)
Brunner, T., Diehl, F., Knoll, A.: Copy and paste: a simple but effective initialization method for black-box adversarial attacks. arXiv: 1906.06086 (2019)
Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)
Carlini, N.: Is ami (attacks meet interpretability) robust to adversarial examples? arXiv: 1902.02322 (2019)
Carlini, N., Wagner, D.: Adversarial examples are not easily detected: Bypassing ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec 2017, pp. 3–14. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3128572.3140444
Carlini, N., Wagner, D.A.: Defensive distillation is not robust to adversarial examples. arXiv: 1607.04311 (2016)
Carlini, N., Wagner, D.A.: Magnet and “efficient defenses against adversarial attacks” are not robust to adversarial examples. arXiv: 1711.08478 (2017)
Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J.C., Liang, P.S.: Unlabeled data improves adversarial robustness. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 11192–11203. Curran Associates, Inc. (2019). http://papers.nips.cc/paper/9298-unlabeled-data-improves-adversarial-robustness.pdf
Chen, J., Jordan, M.I.: Boundary Attack++: Query-efficient decision-based adversarial attack. arXiv: 1904.02144 (2019)
Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec 2017 pp. 15–26. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3128572.3140448
Chiang, P., Geiping, J., Goldblum, M., Goldstein, T., Ni, R., Reich, S., Shafahi, A.: Witchcraft: efficient PGD attacks with random step size. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3747–3751 (2020)
Chiang, P., Ni, R., Abdelkader, A., Zhu, C., Studor, C., Goldstein, T.: Certified defenses for adversarial patches. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=HyeaSkrYPH
Croce, F., Hein, M.: Sparse and imperceivable adversarial attacks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: Proceedings of the International Conference on Machine Learning, vol. 1, pp. 11571–11582 (2020). http://proceedings.mlr.press/v119/croce20b.html
Dhaliwal, J., Hambrook, K.: Recovery guarantees for compressible signals with adversarial noise. arXiv: 1907.06565 (2019)
Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Dumont, B., Maggio, S., Montalvo, P.: Robustness of rotation-equivariant networks to adversarial perturbations. arXiv: 1802.06627 (2018)
Engstrom, L., Ilyas, A., Athalye, A.: Evaluating and understanding the robustness of adversarial logit pairing. arXiv: 1807.10272 (2018)
Engstrom, L., Tsipras, D., Schmidt, L., Madry, A.: A rotation and a translation suffice: Fooling CNNs with simple transformations. arXiv: 1712.02779 (2017)
Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1625–1634 (2018)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv: 1412.6572 (2014)
Gowal, S., et al.: On the effectiveness of interval bound propagation for training verifiably robust models. arXiv: 1810.12715 (2018)
Guo, C., Gardner, J., You, Y., Wilson, A.G., Weinberger, K.: Simple black-box adversarial attacks. In: International Conference on Machine Learning, pp. 2484–2493 (2019)
Hayes, J.: On visible adversarial perturbations & digital watermarking. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1597–1604 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Hosseini, H., Poovendran, R.: Semantic adversarial examples. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1614–1619 (2018)
Huang, R., Xu, B., Schuurmans, D., Szepesvári, C.: Learning with a strong adversary. arXiv: 1511.03034 (2015)
Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with limited queries and information. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, July 2018
Kanbak, C., Moosavi-Dezfooli, S.M., Frossard, P.: Geometric robustness of deep networks: Analysis and improvement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Karmon, D., Zoran, D., Goldberg, Y.: LaVAN: localized and visible adversarial noise. In: Proceeding of the International Conference on Machine Learning (ICML), pp. 2512–2520 (2018)
Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report (2009)
Lamb, A., Verma, V., Kannala, J., Bengio, Y.: Interpolated adversarial training: achieving robust neural networks without sacrificing too much accuracy. In: Proceedings of the ACM Workshop on Artificial Intelligence and Security, pp. 95–103 (2019)
Lee, H., Han, S., Lee, J.: Generative adversarial trainer: defense to adversarial perturbations with GAN. arXiv: 1705.03387 (2017)
Lee, M., Kolter, Z.: On physical adversarial patches for object detection. arXiv: 1906.11897 (2019)
Liu, X., Yang, H., Song, L., Li, H., Chen, Y.: DPatch: Attacking object detectors with adversarial patches. arXiv: 1806.02299 (2018)
Liu, Y., Zhang, W., Li, S., Yu, N.: Enhanced attacks on defensively distilled deep neural networks. arXiv: 1711.05934 (2017)
Luo, B., Liu, Y., Wei, L., Xu, Q.: Towards imperceptible and robust adversarial example attacks against neural networks. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 1652–1659. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16217
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rJzIBfZAb
Maini, P., Wong, E., Kolter, J.Z.: Adversarial robustness against the union of multiple perturbation models. In: Proceedings of the International Conference on Machine Learning (ICML) (2020)
Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for provably robust neural networks. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 3575–3583 (2018)
Miyato, T., Maeda, S.i., Koyama, M., Nakae, K., Ishii, S.: Distributional smoothing with virtual adversarial training. arXiv: 1507.00677 (2015)
Mosbach, M., Andriushchenko, M., Trost, T.A., Hein, M., Klakow, D.: Logit pairing methods can fool gradient-based attacks. arXiv: 1810.12042 (2018)
Naseer, M., Khan, S., Porikli, F.: Local gradients smoothing: defense against localized adversarial attacks. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1300–1307 (2019)
Raghunathan, A., Xie, S.M., Yang, F., Duchi, J.C., Liang, P.: Adversarial training can hurt generalization. arXiv: 1906.06032 (2019)
Ranjan, A., Janai, J., Geiger, A., Black, M.J.: Attacking optical flow. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Schott, L., Rauber, J., Brendel, W., Bethge, M.: Robust perception through analysis by synthesis. arXiv: 1805.09190 (2018)
Shafahi, A., et al.: Adversarial training for free! In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems (NIPS), pp. 3353–3364 (2019)
Shafahi, A., Najibi, M., Xu, Z., Dickerson, J.P., Davis, L.S., Goldstein, T.: Universal adversarial training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020, pp. 5636–5643. AAAI Press (2020). https://aaai.org/ojs/index.php/AAAI/article/view/6017
Shaham, U., Yamada, Y., Negahban, S.: Understanding adversarial training: increasing local stability of neural nets through robust optimization. arXiv: 1511.05432 (2015)
Sharma, Y., Chen, P.Y.: Attacking the madry defense model with l1-based adversarial examples. arXiv: 1710.10733 (2017)
Sinha, A., Namkoong, H., Duchi, J.: Certifiable distributional robustness with principled adversarial training. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hk6kPgZA-
Song, Y., Shu, R., Kushman, N., Ermon, S.: Generative adversarial examples. arXiv: 1805.07894 (2018)
Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012). https://doi.org/10.1016/j.neunet.2012.02.016, http://www.sciencedirect.com/science/article/pii/S0893608012000457
Stutz, D., Hein, M., Schiele, B.: Disentangling adversarial robustness and generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Stutz, D., Hein, M., Schiele, B.: Confidence-calibrated adversarial training: generalizing to unseen attacks. In: Proceedings of the International Conference on Machine Learning ICML (2020)
Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014)
Tramér, F., Boneh, D.: Adversarial training and robustness for multiple perturbations. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 5866–5876. Curran Associates, Inc. (2019). http://papers.nips.cc/paper/8821-adversarial-training-and-robustness-for-multiple-perturbations.pdf
Tramèr, F., Carlini, N., Brendel, W., Madry, A.: On adaptive attacks to adversarial example defenses. arXiv: 2002.08347 (2020)
Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=SyxAb30cY7
Wang, J., Zhang, H.: Bilateral adversarial training: towards fast training of more robust models against adversarial attacks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Wiyatno, R., Xu, A.: Physical adversarial textures that fool visual object tracking. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4821–4830 (2019)
Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: revisiting adversarial training. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=BJx040EFvH
Wu, T., Tong, L., Vorobeychik, Y.: Defending against physically realizable attacks on image classification. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=H1xscnEKDr
Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adversarial examples. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=HyydRMZC-
Xu, H., et al.: Adversarial attacks and defenses in images, graphs and text: a review. Int. J. Autom. Comput. 17, 151–178 (2020)
Xu, K., et al.: Structured adversarial attack: towards general implementation and better interpretability. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=BkgzniCqY7
Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)
Zajac, M., Zołna, K., Rostamzadeh, N., Pinheiro, P.O.: Adversarial framing for image and video classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 10077–10078 (2019)
Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically principled trade-off between robustness and accuracy. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 7472–7482 (2019)
Zhang, H., Chen, H., Song, Z., Boning, D.S., Dhillon, I.S., Hsieh, C.: The limitations of adversarial training and the blind-spot attack. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=HylTBhA5tQ
Zhang, S., Huang, K., Zhu, J., Liu, Y.: Manifold adversarial learning. arXiv: 1807.05832v1 (2018)
Zhao, Z., Dua, D., Singh, S.: Generating natural adversarial examples. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=H1BLjgZCb
Zhao, Z., Liu, Z., Larson, M.A.: A differentiable color filter for generating unrestricted adversarial images. arXiv: 2002.01008 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rao, S., Stutz, D., Schiele, B. (2020). Adversarial Training Against Location-Optimized Adversarial Patches. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12539. Springer, Cham. https://doi.org/10.1007/978-3-030-68238-5_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-68238-5_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68237-8
Online ISBN: 978-3-030-68238-5
eBook Packages: Computer ScienceComputer Science (R0)