Skip to main content

Compact Wearable PIFA on Textile Substrate

  • Conference paper
  • First Online:
Information Technology and Systems (ICITS 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1331))

Included in the following conference series:

Abstract

A compact Planar Inverted-F Antenna design for off-body communications, in the ISM band (2.4–2.5 GHz), is presented. Slots are properly introduced in the radiating element of the PIFA in order to reduce the resonant frequency, thus achieving compactness. The proposed design is based on a textile substrate, making it suitable for integration into garments and clothing items. A lateral coaxial feed mechanism is also employed to reduce the antenna profile. Simulation analysis in terms of antenna return loss and gain is presented as validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aun, N.F.M., Soh, P.J., Al-Hadi, A.A., Jamlos, M.F., Vandenbosch, G.A.E., Schreurs, D.: Revolutionizing wearables for 5G: 5G technologies: recent developments and future perspectives for wearable devices and antennas. IEEE Microw. Mag. 18, 108–124 (2017). https://doi.org/10.1109/MMM.2017.2664019

    Article  Google Scholar 

  2. Attia, M., Taher, M.F.: A wearable device for monitoring and prevention of repetitive ankle sprain. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4667–4670 (2015). https://doi.org/10.1109/EMBC.2015.7319435.

  3. Ramachandran, A., Karuppiah, A.: A survey on recent advances in wearable fall detection systems. BioMed Res. Int. 2020, 1–7 (2020). https://doi.org/10.1155/2020/2167160

    Article  Google Scholar 

  4. GMT, P. 20 J. 2017 | 15:00: Let’s stop using ankle bracelets to monitor offenders - IEEE Spectrum. https://spectrum.ieee.org/consumer-electronics/portable-devices/lets-stop-using-ankle-bracelets-to-monitor-offenders. Accessed 10 Sept 2020

  5. Zeagler, C., Byrne, C., Valentin, G., Freil, L., Kidder, E., Crouch, J., Starner, T., Jackson, M.M.: Search and rescue: dog and handler collaboration through wearable and mobile interfaces. In: Proceedings of the Third International Conference on Animal-Computer Interaction - ACI 2016, pp. 1–9. ACM Press, Milton Keynes (2016). https://doi.org/10.1145/2995257.2995390.

  6. Turakhia, M.P., Desai, M., Hedlin, H., Rajmane, A., Talati, N., Ferris, T., Desai, S., Nag, D., Patel, M., Kowey, P., Rumsfeld, J.S., Russo, A.M., Hills, M.T., Granger, C.B., Mahaffey, K.W., Perez, M.V.: Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: the apple heart study. Am. Heart J. 207, 66–75 (2019). https://doi.org/10.1016/j.ahj.2018.09.002

    Article  Google Scholar 

  7. Koulouridis, S.: Body absorbed radiation and design issues for wearable antennas and sensors. In: Nikita, K.S., Lin, J.C., Fotiadis, D.I., and Arredondo Waldmeyer, M.-T. (eds.) Wireless Mobile Communication and Healthcare, pp. 399–402. Springer, Heidelberg, (2012). https://doi.org/10.1007/978-3-642-29734-2_55.

  8. Rais, N.H.M., Soh, P.J., Malek, F., Ahmad, S., Hashim, N.B.M., Hall, P.S.: A review of wearable antenna. In: 2009 Loughborough Antennas & Propagation Conference, pp. 225–228. IEEE, Loughborough (2009). https://doi.org/10.1109/LAPC.2009.5352373.

  9. Lo, T.K.-, Hwang, Y.: Bandwidth enhancement of PIFA loaded with very high permittivity material using FDTD. In: IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 98CH36), vol. 2, pp. 798–801 (1998). https://doi.org/10.1109/APS.1998.702059.

  10. Waterhouse, R.B. (ed.): Printed Antennas for Wireless Communications. Wiley, Hoboken (2007)

    Google Scholar 

  11. Rowell, C.R., Murch, R.D.: A capacitively loaded PIFA for compact mobile telephone handsets. IEEE Trans. Antennas Propag. 45, 837–842 (1997). https://doi.org/10.1109/8.575634

    Article  Google Scholar 

  12. Attia, H., Bait-Suwailam, M.M., Ramahi, O.M.: Enhanced gain planar inverted-F Antenna with metamaterial superstrate for UMTS applications. PIERS Online. 6, 585–588 (2010). https://doi.org/10.2529/PIERS100422003051

    Article  Google Scholar 

  13. Gao, G., Yang, C., Hu, B., Zhang, R., Wang, S.: A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications. IEEE Antennas Wirel. Propag. Lett. 18, 288–292 (2019). https://doi.org/10.1109/LAWP.2018.2889117

    Article  Google Scholar 

  14. Rothwell, E.J., Ouedraogo, R.O.: Antenna miniaturization: definitions, concepts, and a review with emphasis on metamaterials. J. Electromagn. Waves Appl. 28, 2089–2123 (2014). https://doi.org/10.1080/09205071.2014.972470

    Article  Google Scholar 

  15. Costanzo, S., Venneri, F.: Miniaturized fractal reflectarray element using fixed-size patch. IEEE Antennas Wirel. Propag. Lett. 13, 1437–1440 (2014). https://doi.org/10.1109/LAWP.2014.2341032

    Article  Google Scholar 

  16. Costanzo, S., Qureshi, A.M.: Miniaturized wearable Minkowski planar inverted-F antenna. Presented at the 2020 International Conference on Information Technology & Systems (ICITS 2020), Bogota, Colombia (2020)

    Google Scholar 

  17. Costanzo, S., Qureshi, A.M.: Compact slotted planar inverted-F antenna. Presented at the 8th World Conference on Information Systems and Technologies (WorldCIST), Budva, Montenegro (2020)

    Google Scholar 

  18. Costanzo, S., Cioffi, V.: Preliminary SAR analysis of textile antenna sensor for non-invasive blood-glucose monitoring. In: Rocha, Á., Ferrás, C., Montenegro Marin, C.E., Medina García, V.H. (eds.) Information Technology and Systems, pp. 607–612. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40690-5_58

  19. Locher, I., Klemm, M., Kirstein, T., Trster, G.: Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag. 29, 777–788 (2006). https://doi.org/10.1109/TADVP.2006.884780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Costanzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costanzo, S., Qureshi, A.M., Cioffi, V. (2021). Compact Wearable PIFA on Textile Substrate. In: Rocha, Á., Ferrás, C., López-López, P.C., Guarda, T. (eds) Information Technology and Systems. ICITS 2021. Advances in Intelligent Systems and Computing, vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-68418-1_4

Download citation

Publish with us

Policies and ethics