Skip to main content

Synthesis of Modality Definitions and a Theorem Prover for Epistemic Intuitionistic Logic

  • Conference paper
  • First Online:
Logic-Based Program Synthesis and Transformation (LOPSTR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12561))

Abstract

We propose a mechanism for automating discovery of definitions, that, when added to a logic system for which we have a theorem prover, extends it to support an embedding of a new logic system into it. As a result, the synthesized definitions, when added to the prover, implement a prover for the new logic.

As an instance of the proposed mechanism, we derive a Prolog theorem prover for an interesting but unconventional epistemic Logic by starting from the sequent calculus G4IP that we extend with operator definitions to obtain an embedding in intuitionistic propositional logic (IPC). With help of a candidate definition formula generator, we discover epistemic operators for which axioms and theorems of Artemov and Protopopescu’s Intuitionistic Epistemic Logic (IEL) hold and formulas expected to be non-theorems fail.

We compare the embedding of IEL in IPC with a similarly discovered successful embedding of Dosen’s double negation modality, judged inadequate as an epistemic operator. Finally, we discuss the failure of the necessitation rule for an otherwise successful S4 embedding and share our thoughts about the intuitions explaining these differences between epistemic and alethic modalities in the context of the Brouwer-Heyting-Kolmogorov semantics of intuitionistic reasoning and knowledge acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Logics stronger than intuitionistic but weaker than classical.

  2. 2.

    Actually infinitely many, as there’s an infinite lattice of intermediate logics between classical and intuitionistic logic.

  3. 3.

    Originally called the LJT calculus in [8]. Restricted here to its key implicational fragment.

  4. 4.

    https://github.com/ptarau/TypesAndProofs/blob/master/third_party/dyckhoff_orig.pro.

  5. 5.

    At http://iltp.de.

  6. 6.

    https://github.com/ptarau/TypesAndProofs/blob/master/tester.pro.

  7. 7.

    In fact, our prover is faster than both fCube and Dyckhoff’s prover on the set of formulas of small size on which our definition induction algorithm will run.

  8. 8.

    Not totally accidentally named, given the way Archimedes expressed his sudden awareness about the volume of water displaced by his immersed body.

References

  1. Gelfond, M.: Strong introspection. In: Proceedings of the Ninth National Conference on Artificial Intelligence - Volume 1. AAAI 1991, pp. 386–391. AAAI Press (1991)

    Google Scholar 

  2. Baral, C., Gelfond, G., Son, T.C., Pontelli, E.: Using answer set programming to model multi-agent scenarios involving agents’ knowledge about other’s knowledge. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1. AAMAS 2010, Richland, SC, International Foundation for Autonomous Agents and Multiagent Systems, pp. 259–266 (2010)

    Google Scholar 

  3. Shen, Y.D., Eiter, T.: Evaluating epistemic negation in answer set programming. Artif. Intell. 237(C), 115–135 (2016)

    Google Scholar 

  4. Pearce, David: A new logical characterisation of stable models and answer sets. In: Dix, Jürgen, Pereira, Luís Moniz, Przymusinski, Teodor C. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

    Chapter  Google Scholar 

  5. Artemov, S.N., Protopopescu, T.: Intuitionistic epistemic logic. Rew. Symb. Logic 9(2), 266–298 (2016)

    Article  MathSciNet  Google Scholar 

  6. Dosen, K.: Intuitionistic double negation as a necessity operator. Publications de l’Institut Mathématique, Nouvelle série 35(49), 15–20 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Glivenko, V.: Sur la logique de M. Brouwer. Bulletin de la Classe des Sciences 14, 225–228 (1928)

    Google Scholar 

  8. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symbol. Logic 57(3), 795–807 (1992)

    Google Scholar 

  9. Hudelmaier, J.: A PROLOG Program for Intuitionistic Logic. Universität Tübingen, SNS-Bericht (1988)

    Google Scholar 

  10. Hudelmaier, J.: An O(n log n)-Space Decision Procedure for Intuitionistic Propositional Logic. J. Logic Comput. 3(1), 63–75 (1993)

    Article  MathSciNet  Google Scholar 

  11. Tarau, Paul: A combinatorial testing framework for intuitionistic propositional theorem provers. In: Alferes, José Júlio, Johansson, Moa (eds.) PADL 2019. LNCS, vol. 11372, pp. 115–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05998-9_8

    Chapter  Google Scholar 

  12. Ferrari, Mauro., Fiorentini, Camillo, Fiorino, Guido: fCube: an efficient prover for intuitionistic propositional logic. In: Fermüller, Christian G., Voronkov, Andrei (eds.) LPAR 2010. LNCS, vol. 6397, pp. 294–301. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-8_21

    Chapter  MATH  Google Scholar 

  13. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning: preliminary report. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence - Volume 1. IJCAI 1985, San Francisco, CA, USA, pp. 491–501. Morgan Kaufmann Publishers Inc. (1985)

    Google Scholar 

  14. de Bruijn, N.G.: Exact finite models for minimal propositional calculus over a finite alphabet. Technical report 75?WSK?02, Technological University Eindhoven, November 1975

    Google Scholar 

  15. Jongh, D.D., Hendriks, L., de Lavalette, G.R.R.: Computations in fragments of intuitionistic propositional logic. J. Autom. Reasoning 7(4), 537–561 (1991). https://doi.org/10.1007/BF01880328

    Article  MathSciNet  MATH  Google Scholar 

  16. Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theor. Comput. Sci. 9, 67–72 (1979)

    Article  MathSciNet  Google Scholar 

  17. Egly, U.: A Polynomial translation of propositional S4 into propositional intuitionistic logic (2007)

    Google Scholar 

  18. Goré, R., Thomson, J.: A correct polynomial translation of S4 into intuitionistic logic. J. Symbol. Logic 84(2), 439–451 (2019)

    Article  MathSciNet  Google Scholar 

  19. Muggleton, S.: Inductive logic programming. New Gen. Comput. 8(4), 295–318 (1991)

    Article  Google Scholar 

  20. Shapiro, E.Y.: An algorithm that infers theories from facts. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 1. IJCAI 1981, San Francisco, CA, USA, pp. 446–451. Morgan Kaufmann Publishers Inc. (1981)

    Google Scholar 

  21. Gelfond, Michael: New semantics for epistemic specifications. In: Delgrande, James P., Faber, Wolfgang (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 260–265. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_29

    Chapter  Google Scholar 

  22. Kracht, M.: On extensions of intermediate logics by strong negation. J. Philos. Logic 27(1), 49–73 (1998). https://doi.org/10.1023/A:1004222213212

    Article  MathSciNet  MATH  Google Scholar 

  23. del Cerro, L.F., Herzig, A., Su, E.I.: Epistemic equilibrium logic. In: Yang, Q., Wooldridge, M.J., (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 2964–2970. AAAI Press (2015)

    Google Scholar 

Download references

Acknowledgement

We thank the participants to the EELP’2019 workshop (A forum with no formal proceedings but insightful presentations and lively discussions on epistemic extensions of logic programming systems) and the anonymous reviewers of LOPSTR’2020 for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Tarau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarau, P. (2021). Synthesis of Modality Definitions and a Theorem Prover for Epistemic Intuitionistic Logic. In: Fernández, M. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2020. Lecture Notes in Computer Science(), vol 12561. Springer, Cham. https://doi.org/10.1007/978-3-030-68446-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68446-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68445-7

  • Online ISBN: 978-3-030-68446-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics