Abstract
In the typical distributed applications, the data exchange between the communicating peers proceeds along the transport path established in the connection initialization phase, even if a better one is discovered during the active session. With the recent advancement in the multipath protocol development, e.g., MPTCP, the peers can benefit from a concurrent use of a few channels, thus improving the transmission quality. However, the present approaches to the multipath transfer organization tend to neglect the energy aspects, crucial for resource-constrained Internet of Things (IoT) devices. In this paper, a framework for MPTCP module tuning, targeting the power expenditure, is developed. A new Scheduler and a new Path Manager promoting a conservative energy economy are designed by adopting a formal optimization approach. Moreover, explicit guidelines regarding the TCP variant selection are provided. As confirmed by numerous experiments involving physical devices and real networks, the proposed configuration scheme allows for several percent energy gain with respect to the default one, thus setting a solid framework for green MPTCP-based Industrial IoT communication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Koutsiamanis, R.-A., Papadopoulos, G.Z., Fafoutis, X., Del Fiore, J.M., Thubert, P., Montavont, N.: From best effort to deterministic packet delivery for wireless Industrial IoT networks. IEEE Trans. Ind. Inf. 14(10), 4468–4480 ( 2018)
Xu, L., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inf. 10(4), 2233–2243 ( 2014)
Willig, A.: Recent and emerging topics in wireless industrial communications: a selection. IEEE Trans. Ind. Inf. 4(2), 102–124 ( 2008)
Barré, S., Paasch, C., Bonaventure, O.: MultiPath TCP: from theory to practice. Technical report, Université Catholique de Louvain (2011)
Ford, A., Raiciu, C., Handley, M., Bonaventure, O., Paasch, C.: TCP extensions for multipath operation with multiple addresses. RFC 8684 (2020)
Barré, S., Paasch, C.: MultiPath TCP – Linux kernel implementation. https://www.multipath-tcp.org
Paasch, C., Ferlin, S., Alay, O., Bonaventure, O.: Experimental evaluation of multipath TCP schedulers. In: Proceedings of the ACM SIGCOMM CSWS, Chicago, USA, pp. 27–32 (2014)
Ferlin, S., Alay, Ö., Mehani, O., Boreli, R.: BLEST: blocking estimation-based MPTCP scheduler for heterogeneous networks. In: Proceedings of the IFIP Networking Conference Workshops, Vienna, Austria, pp. 431–439 (2016)
Frommgen, A., Erbshäußer, T., Buchmann, A., Zimmermann, T., Wehrle, K.: ReMP TCP: low latency multipath TCP. In: 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, pp. 1–7 (2016)
Ferlin, S., Kucera, S., Claussen, H., Alay, Ö.: MPTCP meets FEC: supporting latency-sensitive applications over heterogeneous networks. IEEE/ACM Trans. Netw. 26(5), 2005–2018 ( 2018)
Afanasyev, A., Tilley, N., Reiher, P., Kleinrock, L.: Host-to-host congestion control for TCP. IEEE Commun. Surv. Tutor. 12(3), 304–342 (2010). 3Q
Mascolo, S., Casetti, C., Gerla, M., Sanadid, M.Y., Wang, R.: TCP westwood: bandwidth estimation for enhanced transport over wireless links. In: Proceedings of the ACM Mobicom, Rome, Italy (2001)
Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: congestion-based congestion control. ACM Queue 14(5), 20–53 (2016)
Xu, C., Zhao, J., Muntean, G.: Congestion control design for multipath transport protocols: a survey. IEEE Commun. Surv. Tutor. 18(4), 2948–2969 (2016)
Ignaciuk, P., Morawski, M.: Discrete-time sliding-mode controllers for MPTCP networks. IEEE Trans. Syst. Man Cybern. Syst. 50(2) (2020, in press)
Deng, S., Netravali, R., Sivaraman, A., Balakrishnan, H.: WiFi, LTE, or both? Measuring multi-homed wireless internet performance. In: Proceedings of the ACM IMC, Vancouver, Canada, pp. 181–194 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Morawski, M., Ignaciuk, P. (2021). Constructing a Green MPTCP Framework for Industrial Internet of Things Applications. In: Gao, H., J. Durán Barroso, R., Shanchen, P., Li, R. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 355. Springer, Cham. https://doi.org/10.1007/978-3-030-68737-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-68737-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68736-6
Online ISBN: 978-3-030-68737-3
eBook Packages: Computer ScienceComputer Science (R0)