Abstract
The recent spread of COVID-19 put a strain on hospitals all over the world. In this paper we address the problem of hospital overloads and present a tool based on machine learning to predict the length of stay of hospitalised patients affected by COVID-19. This tool was developed using Random Forests and Extra Trees regression algorithms and was trained and tested on the data from more than 1000 hospitalised patients from Northern Italy. These data contain demographics, several laboratory test results and a score that evaluates the severity of the pulmonary conditions. The experimental results show good performance for the length of stay prediction and, in particular, for identifying which patients will stay in hospital for a long period of time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We chose 2, 4, 6, 8, 10 days after the hospitalisation but any other sequence could be considered.
References
Awad, A., Bader–El–Den, M., McNicholas, J.: Patient length of stay and mortality prediction: a survey. Health Serv. Manag. Res. 30(2), 105–120 (2017). https://doi.org/10.1177/0951484817696212, pMID:28539083
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(Feb), 281–305 (2012)
Bindu, V., et al.: Hospital length of stay for COVID-19 patients: data-driven methods for forward planning. BMC pre-print (2020)
Borghesi, A., Maroldi, R.: COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression. La radiologia medica 125(5), 509–513 (2020). https://doi.org/10.1007/s11547-020-01200-3
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Gerevini, A.E., et al.: Automatic classification of radiological reports for clinical care. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 149–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_16
Gerevini, A.E., et al.: Automatic classification of radiological reports for clinical care. Artif. Intell. Med. 91, 72–81 (2018). https://doi.org/10.1016/j.artmed.2018.05.006
Gerevini, A.E., Maroldi, R., Olivato, M., Putelli, L., Serina, I.: Prognosis prediction in covid-19 patients from lab tests and x-ray data through randomized decision trees. In: Bach, K., Bunescu, R.C., Marling, C., Wiratunga, N. (eds.) Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence, KDH@ECAI 2020, Santiago de Compostela, Spain & Virtually, 29–30 August 2020. CEUR Workshop Proceedings, vol. 2675, pp. 27–34. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2675/paper4.pdf
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1
Harutyunyan, H., Khachatrian, H., Kale, D.C., Ver Steeg, G., Galstyan, A.: Multitask learning and benchmarking with clinical time series data. Sci. Data 6(1), 1–18 (2019)
Hasan, S., Padman, R.: Analyzing the effect of data quality on the accuracy of clinical decision support systems: a computer simulation approach. In: AMIA Annual Symposium Proceedings, vol. 2006, p. 324. American Medical Informatics Association (2006)
Hyland, S., et al.: Early prediction of circulatory failure in the intensive care unit using machine learning. Nat. Med. 26, 1–10 (2020). https://doi.org/10.1038/s41591-020-0789-4
Jiang, X., et al.: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. CMC Comput. Mater. Continua 63, 537–51 (2020)
Johnson, A.E., Ghassemi, M.M., Nemati, S., Niehaus, K.E., Clifton, D.A., Clifford, G.D.: Machine learning and decision support in critical care. Proc. IEEE 104(2), 444–466 (2016)
Lam, S.W.S., et al.: Towards health system resiliency: an agile systems modelling framework for bed resource planning during COVID-19. BMC pre-print (2020)
Mehmood, T., Gerevini, A., Lavelli, A., Serina, I.: Leveraging multi-task learning for biomedical named entity recognition. In: Alviano, M., Greco, G., Scarcello, F. (eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 431–444. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35166-3_31
Mehmood, T., Gerevini, A., Lavelli, A., Serina, I.: Multi-task learning applied to biomedical named entity recognition task. In: Bernardi, R., Navigli, R., Semeraro, G. (eds.) Proceedings of the Sixth Italian Conference on Computational Linguistics, Bari, Italy, 13–15 November 2019. CEUR Workshop Proceedings, vol. 2481. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2481/paper47.pdf
Mehmood, T., Gerevini, A.E., Lavelli, A., Serina, I.: Combining multi-task learning with transfer learning for biomedical named entity recognition. In: Cristani, M., Toro, C., Zanni-Merk, C., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 24th International Conference KES-2020, Virtual Event, 16–18 September 2020. Elsevier (2020). Procedia Comput. Sci. 176, 848–857. https://doi.org/10.1016/j.procs.2020.09.080
Mehmood, T., Serina, I., Lavelli, A., Gerevini, A.: Knowledge distillation techniques for biomedical named entity recognition. In: Basile, P., Basile, V., Croce, D., Cabrio, E. (eds.) Proceedings of the 4th Workshop on Natural Language for Artificial Intelligence (NL4AI 2020) co-located with the 19th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2020), Anywhere, 25th-27th November 2020. CEUR Workshop Proceedings, vol. 2735, pp. 141–156. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2735/paper53.pdf
Nemati, M., Ansary, J., Nemati, N.: Machine-learning approaches in COVID-19 survival analysis and discharge-time likelihood prediction using clinical data. Patterns 1(5), 100074 (2020).https://doi.org/10.1016/j.patter.2020.100074, http://www.sciencedirect.com/science/article/pii/S2666389920300945
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Putelli, L., Gerevini, A., Lavelli, A., Serina, I.: The impact of self-interaction attention on the extraction of drug-drug interactions. In: Proceedings of the Sixth Italian Conference on Computational Linguistics (2019)
Putelli, L., Gerevini, A.E., Lavelli, A., Olivato, M., Serina, I.: Deep learning for classification of radiology reports with a hierarchical schema. In: Cristani, M., Toro, C., Zanni-Merk, C., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 24th International Conference KES-2020, Virtual Event, 16–18 September 2020. Elsevier (2020). Procedia Comput. Sci. 176, 349–359. https://doi.org/10.1016/j.procs.2020.08.045
Putelli, L., Gerevini, A.E., Lavelli, A., Serina, I.: Applying self-interaction attention for extracting drug-drug interactions. In: Alviano, M., Greco, G., Scarcello, F. (eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 445–460. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35166-3_32
Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World Scientific Publishing Co., Inc., River Edge (2008)
van der Schaar, M., Alaa, A.: How artificial intelligence and machine learning can help healthcare systems respond to COVID-19 (2020). https://www.vanderschaar-lab.com/covid-19/
Toninelli, G., Gerevini, A., Serina, I., Vaglio, M., Badilini, F.: Study of ECG quality using self learning techniques. In: Computing in Cardiology, CinC 2014, Cambridge, Massachusetts, USA, 7–10 September 2014, pp. 577–580. www.cinc.org (2014). http://www.cinc.org/archives/2014/pdf/0577.pdf
Yan, L., et al.: An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell., 1–6 (2020)
Yan, L., Zhang, H.T., Xiao, Y., Wang, M., et al.: Prediction of criticality in patients with severe covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. medArxiv preprint (2020)
Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms, 1st edn. Chapman & Hall/CRC, Boca Raton (2012)
Acknowledgements
The work of the first author has been supported by Fondazione Garda Valley.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chiari, M., Gerevini, A.E., Maroldi, R., Olivato, M., Putelli, L., Serina, I. (2021). Length of Stay Prediction for Northern Italy COVID-19 Patients Based on Lab Tests and X-Ray Data. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-68763-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68762-5
Online ISBN: 978-3-030-68763-2
eBook Packages: Computer ScienceComputer Science (R0)