Skip to main content

Length of Stay Prediction for Northern Italy COVID-19 Patients Based on Lab Tests and X-Ray Data

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12661))

Included in the following conference series:

Abstract

The recent spread of COVID-19 put a strain on hospitals all over the world. In this paper we address the problem of hospital overloads and present a tool based on machine learning to predict the length of stay of hospitalised patients affected by COVID-19. This tool was developed using Random Forests and Extra Trees regression algorithms and was trained and tested on the data from more than 1000 hospitalised patients from Northern Italy. These data contain demographics, several laboratory test results and a score that evaluates the severity of the pulmonary conditions. The experimental results show good performance for the length of stay prediction and, in particular, for identifying which patients will stay in hospital for a long period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We chose 2, 4, 6, 8, 10 days after the hospitalisation but any other sequence could be considered.

References

  1. Awad, A., Bader–El–Den, M., McNicholas, J.: Patient length of stay and mortality prediction: a survey. Health Serv. Manag. Res. 30(2), 105–120 (2017). https://doi.org/10.1177/0951484817696212, pMID:28539083

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(Feb), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bindu, V., et al.: Hospital length of stay for COVID-19 patients: data-driven methods for forward planning. BMC pre-print (2020)

    Google Scholar 

  4. Borghesi, A., Maroldi, R.: COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression. La radiologia medica 125(5), 509–513 (2020). https://doi.org/10.1007/s11547-020-01200-3

    Article  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  6. Gerevini, A.E., et al.: Automatic classification of radiological reports for clinical care. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 149–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_16

    Chapter  Google Scholar 

  7. Gerevini, A.E., et al.: Automatic classification of radiological reports for clinical care. Artif. Intell. Med. 91, 72–81 (2018). https://doi.org/10.1016/j.artmed.2018.05.006

    Article  Google Scholar 

  8. Gerevini, A.E., Maroldi, R., Olivato, M., Putelli, L., Serina, I.: Prognosis prediction in covid-19 patients from lab tests and x-ray data through randomized decision trees. In: Bach, K., Bunescu, R.C., Marling, C., Wiratunga, N. (eds.) Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence, KDH@ECAI 2020, Santiago de Compostela, Spain & Virtually, 29–30 August 2020. CEUR Workshop Proceedings, vol. 2675, pp. 27–34. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2675/paper4.pdf

  9. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  MATH  Google Scholar 

  10. Harutyunyan, H., Khachatrian, H., Kale, D.C., Ver Steeg, G., Galstyan, A.: Multitask learning and benchmarking with clinical time series data. Sci. Data 6(1), 1–18 (2019)

    Article  Google Scholar 

  11. Hasan, S., Padman, R.: Analyzing the effect of data quality on the accuracy of clinical decision support systems: a computer simulation approach. In: AMIA Annual Symposium Proceedings, vol. 2006, p. 324. American Medical Informatics Association (2006)

    Google Scholar 

  12. Hyland, S., et al.: Early prediction of circulatory failure in the intensive care unit using machine learning. Nat. Med. 26, 1–10 (2020). https://doi.org/10.1038/s41591-020-0789-4

  13. Jiang, X., et al.: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. CMC Comput. Mater. Continua 63, 537–51 (2020)

    Google Scholar 

  14. Johnson, A.E., Ghassemi, M.M., Nemati, S., Niehaus, K.E., Clifton, D.A., Clifford, G.D.: Machine learning and decision support in critical care. Proc. IEEE 104(2), 444–466 (2016)

    Article  Google Scholar 

  15. Lam, S.W.S., et al.: Towards health system resiliency: an agile systems modelling framework for bed resource planning during COVID-19. BMC pre-print (2020)

    Google Scholar 

  16. Mehmood, T., Gerevini, A., Lavelli, A., Serina, I.: Leveraging multi-task learning for biomedical named entity recognition. In: Alviano, M., Greco, G., Scarcello, F. (eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 431–444. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35166-3_31

    Chapter  Google Scholar 

  17. Mehmood, T., Gerevini, A., Lavelli, A., Serina, I.: Multi-task learning applied to biomedical named entity recognition task. In: Bernardi, R., Navigli, R., Semeraro, G. (eds.) Proceedings of the Sixth Italian Conference on Computational Linguistics, Bari, Italy, 13–15 November 2019. CEUR Workshop Proceedings, vol. 2481. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2481/paper47.pdf

  18. Mehmood, T., Gerevini, A.E., Lavelli, A., Serina, I.: Combining multi-task learning with transfer learning for biomedical named entity recognition. In: Cristani, M., Toro, C., Zanni-Merk, C., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 24th International Conference KES-2020, Virtual Event, 16–18 September 2020. Elsevier (2020). Procedia Comput. Sci. 176, 848–857. https://doi.org/10.1016/j.procs.2020.09.080

  19. Mehmood, T., Serina, I., Lavelli, A., Gerevini, A.: Knowledge distillation techniques for biomedical named entity recognition. In: Basile, P., Basile, V., Croce, D., Cabrio, E. (eds.) Proceedings of the 4th Workshop on Natural Language for Artificial Intelligence (NL4AI 2020) co-located with the 19th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2020), Anywhere, 25th-27th November 2020. CEUR Workshop Proceedings, vol. 2735, pp. 141–156. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2735/paper53.pdf

  20. Nemati, M., Ansary, J., Nemati, N.: Machine-learning approaches in COVID-19 survival analysis and discharge-time likelihood prediction using clinical data. Patterns 1(5), 100074 (2020).https://doi.org/10.1016/j.patter.2020.100074, http://www.sciencedirect.com/science/article/pii/S2666389920300945

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Putelli, L., Gerevini, A., Lavelli, A., Serina, I.: The impact of self-interaction attention on the extraction of drug-drug interactions. In: Proceedings of the Sixth Italian Conference on Computational Linguistics (2019)

    Google Scholar 

  23. Putelli, L., Gerevini, A.E., Lavelli, A., Olivato, M., Serina, I.: Deep learning for classification of radiology reports with a hierarchical schema. In: Cristani, M., Toro, C., Zanni-Merk, C., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 24th International Conference KES-2020, Virtual Event, 16–18 September 2020. Elsevier (2020). Procedia Comput. Sci. 176, 349–359. https://doi.org/10.1016/j.procs.2020.08.045

  24. Putelli, L., Gerevini, A.E., Lavelli, A., Serina, I.: Applying self-interaction attention for extracting drug-drug interactions. In: Alviano, M., Greco, G., Scarcello, F. (eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 445–460. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35166-3_32

    Chapter  Google Scholar 

  25. Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World Scientific Publishing Co., Inc., River Edge (2008)

    MATH  Google Scholar 

  26. van der Schaar, M., Alaa, A.: How artificial intelligence and machine learning can help healthcare systems respond to COVID-19 (2020). https://www.vanderschaar-lab.com/covid-19/

  27. Toninelli, G., Gerevini, A., Serina, I., Vaglio, M., Badilini, F.: Study of ECG quality using self learning techniques. In: Computing in Cardiology, CinC 2014, Cambridge, Massachusetts, USA, 7–10 September 2014, pp. 577–580. www.cinc.org (2014). http://www.cinc.org/archives/2014/pdf/0577.pdf

  28. Yan, L., et al.: An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell., 1–6 (2020)

    Google Scholar 

  29. Yan, L., Zhang, H.T., Xiao, Y., Wang, M., et al.: Prediction of criticality in patients with severe covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. medArxiv preprint (2020)

    Google Scholar 

  30. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms, 1st edn. Chapman & Hall/CRC, Boca Raton (2012)

    Google Scholar 

Download references

Acknowledgements

The work of the first author has been supported by Fondazione Garda Valley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Chiari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiari, M., Gerevini, A.E., Maroldi, R., Olivato, M., Putelli, L., Serina, I. (2021). Length of Stay Prediction for Northern Italy COVID-19 Patients Based on Lab Tests and X-Ray Data. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics