Skip to main content

Active Surface for Fully 3D Automatic Segmentation

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

For tumor delineation in Positron Emission Tomography (PET) images, it is of utmost importance to devise efficient and operator-independent segmentation methods capable of reconstructing the 3D tumor shape.

In this paper, we present a fully 3D automatic system for the brain tumor delineation in PET images. In previous work, we proposed a 2D segmentation system based on a two-steps approach. The first step automatically identified the slice enclosing the maximum tracer uptake in the whole tumor volume and generated a rough contour surrounding the tumor itself. Such contour was then used to initialize the second step, where the 3D shape of the tumor was obtained by separately segmenting 2D slices. In this paper, we migrate our system into fully 3D. In particular, the segmentation in the second step is performed by evolving an active surface directly in the 3D space. The key points of such advancement are that it performs the shape reconstruction on the whole stack of slices simultaneously, leveraging useful cross-slice information. Additionally, it does not require any specific stopping condition, as the active surface naturally reaches a stable topology once convergence is achieved.

Performance of this approach is evaluated on the same dataset discussed in our previous work to assess if any benefit is achieved migrating the system from 2D to 3D. Results confirm an improvement in performance in term of dice similarity coefficient (89.89%), and Hausdorff distance (1.11 voxel).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stefano, A., et al.: A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method. BMC Bioinformatics 21, 325 (2020). https://doi.org/10.1186/s12859-020-03647-7

  2. Hatt, M., Tixier, F., Visvikis, D., Cheze Le Rest, C.: Radiomics in PET/CT: more than meets the eye? J. Nucl. Med. 58, 365–366 (2017). https://doi.org/10.2967/jnumed.116.184655

  3. Vernuccio, F., Cannella, R., Comelli, A., Salvaggio, G., Lagalla, R., Midiri, M.: Radiomica e intelligenza artificiale: nuove frontiere in medicina. Recenti Prog. Med. 111, 130–135 (2020). https://doi.org/10.1701/3315.32853

  4. Gallivanone, F., Interlenghi, M., D’Ambrosio, D., Trifirò, G., Castiglioni, I.: Parameters influencing PET imaging features: a phantom study with irregular and heterogeneous synthetic lesions. Contrast Media Mol. Imaging 2018 (2018). https://doi.org/10.1155/2018/5324517

  5. Cegla, P., Kazmierska, J., Gwozdz, S., Czepczynski, R., Malicki, J., Cholewinski, W.: Assessment of biological parameters in head and neck cancer based on in vivo distribution of 18F-FDG-FLT-FMISO-PET/CT images. Tumori (2019). https://doi.org/10.1177/0300891619868012.

  6. Banna, G.L., et al.: Predictive and prognostic value of early disease progression by PET evaluation in advanced non-small cell lung cancer. Oncology 92, 39–47 (2017). https://doi.org/10.1159/000448005

    Article  Google Scholar 

  7. Hatt, M., et al.: The first MICCAI challenge on PET tumor segmentation. Med. Image Anal. 44, 177–195 (2018). https://doi.org/10.1016/j.media.2017.12.007

    Article  Google Scholar 

  8. Hatt, M., Lee, J.A., Schmidtlein, C.R., Lu, W., Jeraj, R.: Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group no. 211. Med Phys. 44, e1–e42 (2017)

    Article  Google Scholar 

  9. Berthon, B., et al.: Toward a standard for the evaluation of PET-auto-segmentation methods following the recommendations of AAPM task group no. 211: requirements and implementation. Med. Phys. (2017). https://doi.org/10.1002/mp.12312

  10. Guo, Z., Guo, N., Gong, K., Zhong, S., Li, Q.: Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network. Phys. Med. Biol. (2019). https://doi.org/10.1088/1361-6560/ab440d

    Article  Google Scholar 

  11. Guo, Z., Guo, N., Li, Q., Gong, K.: Automatic multi-modality segmentation of gross tumor volume for head and neck cancer radiotherapy using 3D U-Net. Presented at the (2019). https://doi.org/10.1117/12.2513229

  12. Foster, B., Bagci, U., Mansoor, A., Xu, Z., Mollura, D.J.: A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014). https://doi.org/10.1016/j.compbiomed.2014.04.014

    Article  Google Scholar 

  13. Im, H.-J., Bradshaw, T., Solaiyappan, M., Cho, S.Y.: Current methods to define metabolic tumor volume in positron emission tomography: which one is better? Nucl. Med. Mol. Imaging 52(1), 5–15 (2017). https://doi.org/10.1007/s13139-017-0493-6

    Article  Google Scholar 

  14. Angulakshmi, M., Lakshmi Priya, G.G.: Automated brain tumour segmentation techniques— a review. Int. J. Imaging Syst. Technol. (2017). https://doi.org/10.1002/ima.22211

    Article  Google Scholar 

  15. Comelli, A.: Fully 3D active surface with machine learning for PET image segmentation. J. Imaging. 6, 113 (2020). https://doi.org/10.3390/jimaging6110113

    Article  Google Scholar 

  16. Sbei, A., ElBedoui, K., Barhoumi, W., Maktouf, C.: Gradient-based generation of intermediate images for heterogeneous tumor segmentation within hybrid PET/MRI scans. Comput. Biol. Med. 119, 103669 (2020). https://doi.org/10.1016/J.COMPBIOMED.2020.103669

    Article  Google Scholar 

  17. Lankton, S., Nain, D., Yezzi, A., Tannenbaum, A.: Hybrid geodesic region-based curve evolutions for image segmentation. In: Hsieh, J., Flynn, M.J. (eds.) Medical Imaging 2007: Physics of Medical Imaging. p. 65104U. International Society for Optics and Photonics (2007). https://doi.org/10.1117/12.709700

  18. Comelli, A., et al.: Active contour algorithm with discriminant analysis for delineating tumors in positron emission tomography. Artif. Intell. Med. 94, 67–78 (2019). https://doi.org/10.1016/j.artmed.2019.01.002

    Article  Google Scholar 

  19. Comelli, A., et al.: K-nearest neighbor driving active contours to delineate biological tumor volumes. Eng. Appl. Artif. Intell. 81, 133–144 (2019). https://doi.org/10.1016/j.engappai.2019.02.005

    Article  Google Scholar 

  20. Comelli, A., et al.: A smart and operator independent system to delineate tumours in positron emission tomography scans. Comput. Biol. Med. 102, 1–5 (2018). https://doi.org/10.1016/j.compbiomed.2018.09.002

    Article  Google Scholar 

  21. Comelli, A., Stefano, A.: A fully automated segmentation system of positron emission tomography studies. In: Zheng, Y., Williams, B.M., Chen, Ke. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 353–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_30

    Chapter  Google Scholar 

  22. Muccio, C.F., Tedeschi, E., Ugga, L., Cuocolo, R., Esposito, G., Caranci, F.: Solitary cerebral metastases vs. high-grade gliomas: usefulness of two MRI signs in the differential diagnosis. Anticancer Res. (2019). https://doi.org/10.21873/anticanres.13677

  23. Stefano, A., et al.: A fully automatic method for biological target volume segmentation of brain metastases. Int. J. Imaging Syst. Technol. 26, 29–37 (2016). https://doi.org/10.1002/ima.22154

    Article  Google Scholar 

  24. Levivier, M., et al.: Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma knife: early experience with brain tumors. Techn. Note. J. Neurosurg. 93(Suppl 3), 233–238 (2000). https://doi.org/10.3171/jns.2000.93.supplement

    Article  Google Scholar 

  25. Comelli, A., et al.: Development of a new fully three-dimensional methodology for tumours delineation in functional images. Comput. Biol. Med. 120 (2020). https://doi.org/10.1016/j.compbiomed.2020.103701

  26. Stefano, A., et al.: An automatic method for metabolic evaluation of Gamma knife treatments. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 579–589. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23231-7_52

    Chapter  Google Scholar 

  27. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging. 23, 903–921 (2004). https://doi.org/10.1109/TMI.2004.828354

    Article  Google Scholar 

  28. Huang, B., et al.: Fully automated delineation of gross tumor volume for head and neck cancer on PET-CT using deep learning: a dual-center study. Contrast Media Mol. Imaging. (2018). https://doi.org/10.1155/2018/8923028

    Article  Google Scholar 

  29. Day, E., et al.: A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med. Phys. 36, 4349–4358 (2009). https://doi.org/10.1118/1.3213099

    Article  Google Scholar 

  30. Stefano, A., et al.: An enhanced random walk algorithm for delineation of head and neck cancers in PET studies. Med. Biol. Eng. Comput. 55(6), 897–908 (2016). https://doi.org/10.1007/s11517-016-1571-0

    Article  Google Scholar 

  31. Belhassen, S., Zaidi, H.: A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med. Phys. 37, 1309–1324 (2010). https://doi.org/10.1118/1.3301610

    Article  Google Scholar 

  32. Cuocolo, R., et al.: Machine learning applications in prostate cancer magnetic resonance imaging. Eur. Radiol. Exp. 3, 35 (2019). https://doi.org/10.1186/s41747-019-0109-2

    Article  Google Scholar 

  33. Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification in positron emission tomography oncological studies. Pattern Recogn. Image Anal. 28, 106–113 (2018). https://doi.org/10.1134/S1054661818010054

    Article  Google Scholar 

  34. Comelli, A., et al.: Tissue classification to support local active delineation of brain tumors. In: Zheng, Y., Williams, B.M., Chen, Ke. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 3–14. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_1

    Chapter  Google Scholar 

  35. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26, 136–150 (2016). https://doi.org/10.1002/ima.22168

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Samuel Bignardi, Prof. Anthony Yezzi, Dr. Giorgio Russo, Dr. Maria Gabriella Sabini, and Dr. Massimo Ippolito, who provided crucial suggestions and high quality observations during the preparation of this study. Additionally, we would like to acknowledge our family, for their unceasing encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Comelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Comelli, A., Stefano, A. (2021). Active Surface for Fully 3D Automatic Segmentation. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics