Abstract
Patients with epilepsy suffer from recurrently occurring seizures. To improve diagnosis and treatment as well as to increase patients’ safety and quality of life, it is of great interest to develop reliable methods for automated seizure detection. In this work, we evaluate a first trial of a multimodal approach combining 3D acceleration and heart rate data acquired with a mobile In-Ear sensor as part of the project EPItect. For the detection of tonic–clonic seizures (TCS), we train different classification models (Naïve Bayes, K-Nearest-Neighbor, linear Support Vector Machine and Adaboost.M1) and evaluate cost-sensitive learning as a measure to address the problem of highly imbalanced data. To assess the performance of our multimodal approach, we compare it to a unimodal approach, which only uses the acceleration data. Experiments show that our method leads to a higher sensitivity, lower detection latency and lower false alarm rate compared to the unimodal method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Picot, M.-C., Baldy-Moulinier, M., Daurs, J.-P., Dujols, P., Crespel, A.: The prevalence of epilepsy and pharmacoresistant epilepsy in adults: A population-based study in a Western European country. Epilepsia 49(7), 1230–1238 (2008). https://doi.org/10.1111/j.1528-1167.2008.01579.x
Ramgopal, S., et al.: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37, 291–307 (2014). https://doi.org/10.1016/j.yebeh.2014.06.023
Hoppe, C., Poepel, A., Elger, C.E.: Epilepsy: Accuracy of patient seizure counts. Arch. Neurol. 64(11), 1595–1599 (2007)
Bidwell, J., Khuwatsamrit, T., Askew, B., Ehrenberg, J.A., Helmers, S.: Seizure reporting technologies for epilepsy treatment: a review of clinical information needs and supporting technologies. Seizure 32, 109–117 (2015). https://doi.org/10.1016/j.seizure.2015.09.006
Van de Vel, A., et al.: Non-EEG seizure detection systems and potential SUDEP prevention: State of the art. Seizure 41, 141–153 (2016). https://doi.org/10.1016/j.seizure.2016.07.012
Baumgartner (hrsg.), C., et al.: Handbuch der Epilepsien: Klinik, Diagnostik, Therapie und psychosoziale Aspekte. Wien: Springer, Wien (2001)
De Cooman, T., Carrette, E., Boon, P., Meurs, A., Van Huffel, S.: Online seizure detection in adults with temporal lobe epilepsy using single-lead ECG. In: 22nd European Signal Processing Conference (EUSIPCO), pp. 1532–1536. IEEE (2014)
Pearl, P.L., Loddenkemper, T., Ulate-Campos, A., Coughlin, F., Gaínza-Lein, M., Fernández, I.S.: Automated seizure detection systems and their effectiveness for each type of seizure. Seizure 40, 88–101 (2016). https://doi.org/10.1016/j.seizure.2016.06.008
Halford, J.J., et al.: Detection of generalized tonic–clonic seizures using surface electromyographic monitoring. Epilepsia 58(11), 1861–1869 (2017). https://doi.org/10.1111/epi.13897
Schneble, H.: Epilepsie. Erscheinungsbilder - Ursachen - Behandlung, Originalau. München: Beck (Beck’sche Reihe; 2047 : C.H. Beck Wissen) (1996)
Matthes, A., Schneble, H.: Epilepsien: Diagnostik und Therapie für Klinik und Praxis, 6., Neubea. Stuttgart: Georg Thieme Verlag (1999)
Wolf (Hrsg.), P.: Praxisbuch Epilepsien: Diagnostik - Behandlung - Rehabilitation. Stuttgart: W. Kohlhammer (2003)
Houta, S., Bisgin, P., Dulich, P.: Machine learning methods for detection of Epileptic seizures with long-term wearable devices. In: Eleventh International Conference on eHealth, Telemedicine, and Social Medicine (2019)
Nijsen, T.M.E., Arends, J.B.A.M., Griep, P.A.M., Cluitmans, P.J.M.: The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy. Epilepsy Behav. 7(1), 74–84 (2005). https://doi.org/10.1016/j.yebeh.2005.04.011
Gutierrez, E.G., Crone, N.E., Kang, J.Y., Carmenate, Y.I., Krauss, G.L.: Strategies for non-EEG seizure detection and timing for alerting and interventions with tonic-clonic seizures. Epilepsia 59, 36–41 (2018). https://doi.org/10.1111/epi.14046
Arends, J.B.A.M.: Movement-based seizure detection. Epilepsia 59(February), 30–35 (2018). https://doi.org/10.1111/epi.14053
Zijlmans, M., Flanagan, D., Gotman, J.: Heart rate changes and ECG abnormalities during epileptic seizures: Prevalence and definition of an objective clinical sign. Epilepsia 43(8), 847–854 (2002). https://doi.org/10.1046/j.1528-1157.2002.37801.x
Leijten, F.S.S., et al.: Multimodal seizure detection: a review. Epilepsia 59(S1), 42–47 (2018). https://doi.org/10.1111/epi.14047
van Andel, J., et al.: Multimodal, automated detection of nocturnal motor seizures at home: is a reliable seizure detector feasible? Epilepsia Open 2(4), 424–431 (2017). https://doi.org/10.1002/epi4.12076
Arends, J., et al.: Multimodal nocturnal seizure detection in a residential care setting: a long-term prospective trial. Neurology 91(21), e2010–e2019 (2018). https://doi.org/10.1212/WNL.0000000000006545
Beniczky, S., Ryvlin, P.: Standards for testing and clinical validation of seizure detection devices. Epilepsia 59, 9–13 (2018). https://doi.org/10.1111/epi.14049
Nijsen, T.M.E., Aarts, R.M., Arends, J.B.A.M., Cluitmans, P.J.M.: Automated detection of tonic seizures using 3-D accelerometry. IFMBE Proceedings 22, 188–191 (2008). https://doi.org/10.1007/978-3-540-89208-3_47
De Cooman, T., Van De Vel, A., Ceulemans, B., Lagae, L., Vanrumste, B., Van Huffel, S.: Online detection of tonic-clonic seizures in pediatric patients using ECG and low-complexity incremental novelty detection. In: Proceedings Annual International Conference IEEE Engineering Medical Biology Social EMBS, vol. 2015–Novem, pp. 5597–5600 (2015). doi: https://doi.org/10.1109/EMBC.2015.7319661.
Vandecasteele, K., et al.: Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment. Sensors 17(10), 2338 (2017). https://doi.org/10.3390/s17102338
Bender, D., et al.: Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia 58(11), 1870–1879 (2017). https://doi.org/10.1111/epi.13899
Poh, M.Z., et al.: Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia 53(5), 93–97 (2012). https://doi.org/10.1111/j.1528-1167.2012.03444.x
De Cooman, T., Kjær, T., Van Huffel, S., Sorensen, H.: Adaptive heart rate-based epileptic seizure detection using real-time user feedback. Physiol. Measur. 39(1), 014005 (2018). https://doi.org/10.1088/1361-6579/aaa216
Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010). https://doi.org/10.3390/s100201154
Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_1
Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73(December), 220–239 (2017). https://doi.org/10.1016/j.eswa.2016.12.035
Kumar, M.N.A., Sheshadri, H.S.: On the classification of imbalanced datasets. Int. J. Comput. Appl. 44(8), 1–7 (2012). http//doi.org.https://doi.org/10.5120/6280-8449
Sonak, A., Patankar, R.A.: A survey on methods to handle imbalance dataset. Int. J. Comput. Sci. Mob. Comput. 4(11), pp. 338–343 (2015). https://ijcsmc.com/docs/papers/November2015/V4I11201573.pdf.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software. ACM SIGKDD Explor. Newsl. (2009). https://doi.org/10.1145/1656274.1656278
Acknowledgements
The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the framework of EPItect (project number 16SV7482).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Henze, J., Houta, S., Surges, R., Kreuzer, J., Bisgin, P. (2021). Multimodal Detection of Tonic–Clonic Seizures Based on 3D Acceleration and Heart Rate Data from an In-Ear Sensor. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-68763-2_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68762-5
Online ISBN: 978-3-030-68763-2
eBook Packages: Computer ScienceComputer Science (R0)