Skip to main content

Multimodal Detection of Tonic–Clonic Seizures Based on 3D Acceleration and Heart Rate Data from an In-Ear Sensor

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12661))

Included in the following conference series:

Abstract

Patients with epilepsy suffer from recurrently occurring seizures. To improve diagnosis and treatment as well as to increase patients’ safety and quality of life, it is of great interest to develop reliable methods for automated seizure detection. In this work, we evaluate a first trial of a multimodal approach combining 3D acceleration and heart rate data acquired with a mobile In-Ear sensor as part of the project EPItect. For the detection of tonic–clonic seizures (TCS), we train different classification models (Naïve Bayes, K-Nearest-Neighbor, linear Support Vector Machine and Adaboost.M1) and evaluate cost-sensitive learning as a measure to address the problem of highly imbalanced data. To assess the performance of our multimodal approach, we compare it to a unimodal approach, which only uses the acceleration data. Experiments show that our method leads to a higher sensitivity, lower detection latency and lower false alarm rate compared to the unimodal method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Picot, M.-C., Baldy-Moulinier, M., Daurs, J.-P., Dujols, P., Crespel, A.: The prevalence of epilepsy and pharmacoresistant epilepsy in adults: A population-based study in a Western European country. Epilepsia 49(7), 1230–1238 (2008). https://doi.org/10.1111/j.1528-1167.2008.01579.x

    Article  Google Scholar 

  2. Ramgopal, S., et al.: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37, 291–307 (2014). https://doi.org/10.1016/j.yebeh.2014.06.023

    Article  Google Scholar 

  3. Hoppe, C., Poepel, A., Elger, C.E.: Epilepsy: Accuracy of patient seizure counts. Arch. Neurol. 64(11), 1595–1599 (2007)

    Google Scholar 

  4. Bidwell, J., Khuwatsamrit, T., Askew, B., Ehrenberg, J.A., Helmers, S.: Seizure reporting technologies for epilepsy treatment: a review of clinical information needs and supporting technologies. Seizure 32, 109–117 (2015). https://doi.org/10.1016/j.seizure.2015.09.006

    Article  Google Scholar 

  5. Van de Vel, A., et al.: Non-EEG seizure detection systems and potential SUDEP prevention: State of the art. Seizure 41, 141–153 (2016). https://doi.org/10.1016/j.seizure.2016.07.012

    Article  Google Scholar 

  6. Baumgartner (hrsg.), C., et al.: Handbuch der Epilepsien: Klinik, Diagnostik, Therapie und psychosoziale Aspekte. Wien: Springer, Wien (2001)

    Google Scholar 

  7. De Cooman, T., Carrette, E., Boon, P., Meurs, A., Van Huffel, S.: Online seizure detection in adults with temporal lobe epilepsy using single-lead ECG. In: 22nd European Signal Processing Conference (EUSIPCO), pp. 1532–1536. IEEE (2014)

    Google Scholar 

  8. Pearl, P.L., Loddenkemper, T., Ulate-Campos, A., Coughlin, F., Gaínza-Lein, M., Fernández, I.S.: Automated seizure detection systems and their effectiveness for each type of seizure. Seizure 40, 88–101 (2016). https://doi.org/10.1016/j.seizure.2016.06.008

    Article  Google Scholar 

  9. Halford, J.J., et al.: Detection of generalized tonic–clonic seizures using surface electromyographic monitoring. Epilepsia 58(11), 1861–1869 (2017). https://doi.org/10.1111/epi.13897

    Article  Google Scholar 

  10. Schneble, H.: Epilepsie. Erscheinungsbilder - Ursachen - Behandlung, Originalau. München: Beck (Beck’sche Reihe; 2047 : C.H. Beck Wissen) (1996)

    Google Scholar 

  11. Matthes, A., Schneble, H.: Epilepsien: Diagnostik und Therapie für Klinik und Praxis, 6., Neubea. Stuttgart: Georg Thieme Verlag (1999)

    Google Scholar 

  12. Wolf (Hrsg.), P.: Praxisbuch Epilepsien: Diagnostik - Behandlung - Rehabilitation. Stuttgart: W. Kohlhammer (2003)

    Google Scholar 

  13. Houta, S., Bisgin, P., Dulich, P.: Machine learning methods for detection of Epileptic seizures with long-term wearable devices. In: Eleventh International Conference on eHealth, Telemedicine, and Social Medicine (2019)

    Google Scholar 

  14. Nijsen, T.M.E., Arends, J.B.A.M., Griep, P.A.M., Cluitmans, P.J.M.: The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy. Epilepsy Behav. 7(1), 74–84 (2005). https://doi.org/10.1016/j.yebeh.2005.04.011

    Article  Google Scholar 

  15. Gutierrez, E.G., Crone, N.E., Kang, J.Y., Carmenate, Y.I., Krauss, G.L.: Strategies for non-EEG seizure detection and timing for alerting and interventions with tonic-clonic seizures. Epilepsia 59, 36–41 (2018). https://doi.org/10.1111/epi.14046

    Article  Google Scholar 

  16. Arends, J.B.A.M.: Movement-based seizure detection. Epilepsia 59(February), 30–35 (2018). https://doi.org/10.1111/epi.14053

    Article  Google Scholar 

  17. Zijlmans, M., Flanagan, D., Gotman, J.: Heart rate changes and ECG abnormalities during epileptic seizures: Prevalence and definition of an objective clinical sign. Epilepsia 43(8), 847–854 (2002). https://doi.org/10.1046/j.1528-1157.2002.37801.x

    Article  Google Scholar 

  18. Leijten, F.S.S., et al.: Multimodal seizure detection: a review. Epilepsia 59(S1), 42–47 (2018). https://doi.org/10.1111/epi.14047

    Article  Google Scholar 

  19. van Andel, J., et al.: Multimodal, automated detection of nocturnal motor seizures at home: is a reliable seizure detector feasible? Epilepsia Open 2(4), 424–431 (2017). https://doi.org/10.1002/epi4.12076

    Article  Google Scholar 

  20. Arends, J., et al.: Multimodal nocturnal seizure detection in a residential care setting: a long-term prospective trial. Neurology 91(21), e2010–e2019 (2018). https://doi.org/10.1212/WNL.0000000000006545

    Article  Google Scholar 

  21. Beniczky, S., Ryvlin, P.: Standards for testing and clinical validation of seizure detection devices. Epilepsia 59, 9–13 (2018). https://doi.org/10.1111/epi.14049

    Article  Google Scholar 

  22. Nijsen, T.M.E., Aarts, R.M., Arends, J.B.A.M., Cluitmans, P.J.M.: Automated detection of tonic seizures using 3-D accelerometry. IFMBE Proceedings 22, 188–191 (2008). https://doi.org/10.1007/978-3-540-89208-3_47

    Article  Google Scholar 

  23. De Cooman, T., Van De Vel, A., Ceulemans, B., Lagae, L., Vanrumste, B., Van Huffel, S.: Online detection of tonic-clonic seizures in pediatric patients using ECG and low-complexity incremental novelty detection. In: Proceedings Annual International Conference IEEE Engineering Medical Biology Social EMBS, vol. 2015–Novem, pp. 5597–5600 (2015). doi: https://doi.org/10.1109/EMBC.2015.7319661.

  24. Vandecasteele, K., et al.: Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment. Sensors 17(10), 2338 (2017). https://doi.org/10.3390/s17102338

    Article  Google Scholar 

  25. Bender, D., et al.: Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia 58(11), 1870–1879 (2017). https://doi.org/10.1111/epi.13899

    Article  Google Scholar 

  26. Poh, M.Z., et al.: Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia 53(5), 93–97 (2012). https://doi.org/10.1111/j.1528-1167.2012.03444.x

    Article  Google Scholar 

  27. De Cooman, T., Kjær, T., Van Huffel, S., Sorensen, H.: Adaptive heart rate-based epileptic seizure detection using real-time user feedback. Physiol. Measur. 39(1), 014005 (2018). https://doi.org/10.1088/1361-6579/aaa216

    Article  Google Scholar 

  28. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010). https://doi.org/10.3390/s100201154

    Article  Google Scholar 

  29. Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_1

    Chapter  Google Scholar 

  30. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73(December), 220–239 (2017). https://doi.org/10.1016/j.eswa.2016.12.035

    Article  Google Scholar 

  31. Kumar, M.N.A., Sheshadri, H.S.: On the classification of imbalanced datasets. Int. J. Comput. Appl. 44(8), 1–7 (2012). http//doi.org.https://doi.org/10.5120/6280-8449

  32. Sonak, A., Patankar, R.A.: A survey on methods to handle imbalance dataset. Int. J. Comput. Sci. Mob. Comput. 4(11), pp. 338–343 (2015). https://ijcsmc.com/docs/papers/November2015/V4I11201573.pdf.

  33. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software. ACM SIGKDD Explor. Newsl. (2009). https://doi.org/10.1145/1656274.1656278

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the framework of EPItect (project number 16SV7482).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Henze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Henze, J., Houta, S., Surges, R., Kreuzer, J., Bisgin, P. (2021). Multimodal Detection of Tonic–Clonic Seizures Based on 3D Acceleration and Heart Rate Data from an In-Ear Sensor. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics