Abstract
Neurodegenerative disease assessment with handwriting has been shown to be effective. In this exploratory analysis, several features are extracted and tested on different tasks of the novel HAND-UNIBA dataset. Results show what are the most important kinematic features and the most significant tasks for neurodegenerative disease assessment through handwriting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Impedovo, D., Pirlo, G.: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective. IEEE Rev. Biomed. Eng. 12, 209–220 (2019)
De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn. Lett. 121, 37–45 (2019)
Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I., Schlesinger, I.: Handwriting as an objective tool for Parkinson’s disease diagnosis. J. Neurol. 260(9), 2357–2361 (2013)
Astrom, F., Koker, R.: A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst. Appl. 38(10), 12470–12474 (2011)
O’Reilly, C., Plamondon, R.: Development of a sigma–lognormal representation for on-line signatures. Pattern Recogn. 42(12), 3324–3337 (2009)
Pereira, C.R., et al.: A step towards the automated diagnosis of Parkinson’s disease: analyzing handwriting movements. In: IEEE 28th International Symposium on Computer Based Medical Systems (CBMS), pp. 171–176 (2015)
Kahindo, C., El-Yacoubi, M.A., Garcia-Salicetti, S., Rigaud, A., Cristancho-Lacroix, V.: Characterizing early-stage Alzheimer through spatiotemporal dynamics of handwriting. IEEE Sig. Process. Lett. 25(8), 1136–1140 (2018)
Caligiuri, M.P., Teulings, H.L., Filoteo, J.V., Song, D., Lohr, J.B.: Quantitative measurement of handwriting in the assessment of drug-induced Parkinsonism. Hum. Mov. Sci. 25(4), 510–522 (2006)
Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., Faun-dez-Zanuy, M.: Decision support framework for Parkinson’s disease based on novel handwriting markers. IEEE Trans. Neural Syst. Rehabil. Eng. 23(3), 508–516 (2015)
Ponsen, M.M., Daffertshofer, A., Wolters, E.C., Beek, P.J., Berendse, H.W.: Impairment of complex upper limb motor function in de novo Parkinson’s disease. Parkinsonism Relat. Disord. 14(3), 199–204 (2008)
Smits, E.J., et al.: Standardized handwriting to assess bradykinesia, micrographia and tremor in Parkinson’s disease. PLoS ONE 9(5), e97614 (2014)
Broderick, M.P., Van Gemmert, A.W., Shill, H.A.: Hypometria and bradykinesia during drawing movements in individuals with Parkinson disease. Exp. Brain Res. 197(3), 223–233 (2009)
Kotsavasiloglou, C., Kostikis, N., Hristu-Varsakelis, D., Arnaoutoglou, M.: Machine learning-based classification of simple drawing movements in Parkinson’s disease. Biomed. Sig. Process. Control 31, 174–180 (2017)
Li, G., et al.: Temperature based restricted Boltzmann Machines. Sci. Rep. 6(1), 1–12 (2016)
Impedovo, D.: Velocity-based signal features for the assessment of Parkinsonian handwriting. IEEE Sig. Process. Lett. 26(4), 632–636 (2019)
Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages. Applications. Academic press, Cambridge (2014)
Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001)
Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Sig. Process. Mag. 24(4), 118–121 (2007)
Reitan, R.M.: Validity of the trail making test as an indicator of organic brain damage. Percept. Mot. Skills 8(3), 271–276 (1958)
Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Handwriting analysis to support alzheimer’s disease diagnosis: a preliminary study. In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11679, pp. 143–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29891-3_13
Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Di Freca, A.S.: Using handwriting features to characterize cognitive impairment. In: International Conference on Image Analysis and Processing, September 2019, pp. 683–693. Springer, Cham. https://doi.org/10.1007/978-3-030-30645-8_62
Cilia, N.D., De Stefano, C., Fontanella, F., Di Freca, A.S.: An experimental protocol to support cognitive impairment diagnosis by using handwriting analysis. Proc. Comput. Sci. 141, 466–471 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dentamaro, V., Impedovo, D., Pirlo, G. (2021). An Analysis of Tasks and Features for Neuro-Degenerative Disease Assessment by Handwriting. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-68763-2_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68762-5
Online ISBN: 978-3-030-68763-2
eBook Packages: Computer ScienceComputer Science (R0)