Skip to main content

An Analysis of Tasks and Features for Neuro-Degenerative Disease Assessment by Handwriting

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Neurodegenerative disease assessment with handwriting has been shown to be effective. In this exploratory analysis, several features are extracted and tested on different tasks of the novel HAND-UNIBA dataset. Results show what are the most important kinematic features and the most significant tasks for neurodegenerative disease assessment through handwriting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Impedovo, D., Pirlo, G.: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective. IEEE Rev. Biomed. Eng. 12, 209–220 (2019)

    Article  Google Scholar 

  2. De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn. Lett. 121, 37–45 (2019)

    Article  Google Scholar 

  3. Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I., Schlesinger, I.: Handwriting as an objective tool for Parkinson’s disease diagnosis. J. Neurol. 260(9), 2357–2361 (2013)

    Article  Google Scholar 

  4. Astrom, F., Koker, R.: A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst. Appl. 38(10), 12470–12474 (2011)

    Article  Google Scholar 

  5. O’Reilly, C., Plamondon, R.: Development of a sigma–lognormal representation for on-line signatures. Pattern Recogn. 42(12), 3324–3337 (2009)

    Article  Google Scholar 

  6. Pereira, C.R., et al.: A step towards the automated diagnosis of Parkinson’s disease: analyzing handwriting movements. In: IEEE 28th International Symposium on Computer Based Medical Systems (CBMS), pp. 171–176 (2015)

    Google Scholar 

  7. Kahindo, C., El-Yacoubi, M.A., Garcia-Salicetti, S., Rigaud, A., Cristancho-Lacroix, V.: Characterizing early-stage Alzheimer through spatiotemporal dynamics of handwriting. IEEE Sig. Process. Lett. 25(8), 1136–1140 (2018)

    Article  Google Scholar 

  8. Caligiuri, M.P., Teulings, H.L., Filoteo, J.V., Song, D., Lohr, J.B.: Quantitative measurement of handwriting in the assessment of drug-induced Parkinsonism. Hum. Mov. Sci. 25(4), 510–522 (2006)

    Article  Google Scholar 

  9. Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., Faun-dez-Zanuy, M.: Decision support framework for Parkinson’s disease based on novel handwriting markers. IEEE Trans. Neural Syst. Rehabil. Eng. 23(3), 508–516 (2015)

    Google Scholar 

  10. Ponsen, M.M., Daffertshofer, A., Wolters, E.C., Beek, P.J., Berendse, H.W.: Impairment of complex upper limb motor function in de novo Parkinson’s disease. Parkinsonism Relat. Disord. 14(3), 199–204 (2008)

    Article  Google Scholar 

  11. Smits, E.J., et al.: Standardized handwriting to assess bradykinesia, micrographia and tremor in Parkinson’s disease. PLoS ONE 9(5), e97614 (2014)

    Article  Google Scholar 

  12. Broderick, M.P., Van Gemmert, A.W., Shill, H.A.: Hypometria and bradykinesia during drawing movements in individuals with Parkinson disease. Exp. Brain Res. 197(3), 223–233 (2009)

    Article  Google Scholar 

  13. Kotsavasiloglou, C., Kostikis, N., Hristu-Varsakelis, D., Arnaoutoglou, M.: Machine learning-based classification of simple drawing movements in Parkinson’s disease. Biomed. Sig. Process. Control 31, 174–180 (2017)

    Article  Google Scholar 

  14. Li, G., et al.: Temperature based restricted Boltzmann Machines. Sci. Rep. 6(1), 1–12 (2016)

    Article  Google Scholar 

  15. Impedovo, D.: Velocity-based signal features for the assessment of Parkinsonian handwriting. IEEE Sig. Process. Lett. 26(4), 632–636 (2019)

    Article  Google Scholar 

  16. Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages. Applications. Academic press, Cambridge (2014)

    MATH  Google Scholar 

  17. Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  18. Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Sig. Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  19. Reitan, R.M.: Validity of the trail making test as an indicator of organic brain damage. Percept. Mot. Skills 8(3), 271–276 (1958)

    Article  Google Scholar 

  20. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Handwriting analysis to support alzheimer’s disease diagnosis: a preliminary study. In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11679, pp. 143–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29891-3_13

    Chapter  Google Scholar 

  21. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Di Freca, A.S.: Using handwriting features to characterize cognitive impairment. In: International Conference on Image Analysis and Processing, September 2019, pp. 683–693. Springer, Cham. https://doi.org/10.1007/978-3-030-30645-8_62

  22. Cilia, N.D., De Stefano, C., Fontanella, F., Di Freca, A.S.: An experimental protocol to support cognitive impairment diagnosis by using handwriting analysis. Proc. Comput. Sci. 141, 466–471 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Dentamaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dentamaro, V., Impedovo, D., Pirlo, G. (2021). An Analysis of Tasks and Features for Neuro-Degenerative Disease Assessment by Handwriting. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics