Skip to main content

Topological Drawings Meet Classical Theorems from Convex Geometry

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12590))

Included in the following conference series:

  • 761 Accesses

Abstract

In this article we discuss classical theorems from Convex Geometry in the context of topological drawings. In a simple topological drawing of the complete graph \(K_n\), any two edges share at most one point: either a common vertex or a point where they cross. Triangles of simple topological drawings can be viewed as convex sets. This gives a link to convex geometry.

We present a generalization of Kirchberger’s Theorem, a family of simple topological drawings with arbitrarily large Helly number, and a new proof of a topological generalization of Carathéodory’s Theorem in the plane. We also discuss further classical theorems from Convex Geometry in the context of simple topological drawings.

We introduce “generalized signotopes” as a generalization of simple topological drawings. As indicated by the name they are a generalization of signotopes, a structure studied in the context of encodings for arrangements of pseudolines.

Raphael Steiner was funded by DFG-GRK 2434. Stefan Felsner and Manfred Scheucher were partially supported by DFG Grant FE 340/12-1. Manfred Scheucher was partially supported by the internal research funding “Post-Doc-Funding” from Technische Universität Berlin. We thank Alan Arroyo, Emo Welzl, Heiko Harborth, and Geza Tóth for helpful discussions. A special thanks goes to Patrick Schnider for his simplification of the construction in the proof of Proposition 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Arrangements of pseudolines obtained by such extensions are equivalent to pseudoconfigurations of points, and can be considered as oriented matroids of rank 3 (cf. Chapter 5.3 of [17]).

References

  1. Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small point sets with applications. Order 19(3), 265–281 (2002). https://doi.org/10.1023/A:1021231927255

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer, O., Hackl, T., Pilz, A., Salazar, G., Vogtenhuber, B.: Deciding monotonicity of good drawings of the complete graph. In: Proceedings of XVI Spanish Meeting on Computational Geometry (EGC 2015), pp. 33–36 (2015). http://www.ist.tugraz.at/cpgg/downloadables/ahpsv-dmgdc-15.pdf

  3. Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger-Debrunner (\(p, q\))-problem. Adv. Math. 96(1), 103–112 (1992). https://doi.org/10.1016/0001-8708(92)90052-M

    Article  MathSciNet  MATH  Google Scholar 

  4. Arroyo, A., Bensmail, J., Richter, R.B.: Extending drawings of graphs to arrangements of pseudolines. In: 36th International Symposium on Computational Geometry (SoCG 2020). LIPIcs, vol. 164, pp. 9:1–9:14. Schloss Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.SoCG.2020.9

  5. Arroyo, A., McQuillan, D., Richter, R.B., Salazar, G.: Convex drawings of the complete graph: topology meets geometry (2017). arXiv:1712.06380

  6. Arroyo, A., McQuillan, D., Richter, R.B., Salazar, G.: Drawings of \(K_n\) with the same rotation scheme are the same up to Reidemeister moves (Gioan’s Theorem). Aust. J. Comb. 67, 131–144 (2017). http://ajc.maths.uq.edu.au/pdf/67/ajcv67p131.pdf

    MATH  Google Scholar 

  7. Arroyo, A., McQuillan, D., Richter, R.B., Salazar, G.: Levi’s Lemma, pseudolinear drawings of \(K_n\), and empty triangles. J. Graph Theory 87(4), 443–459 (2018). https://doi.org/10.1002/jgt.22167

    Article  MathSciNet  MATH  Google Scholar 

  8. Arroyo, A., Richter, R.B., Sunohara, M.: Extending drawings of complete graphs into arrangements of pseudocircles (2020). arXiv:2001.06053

  9. Bachem, A., Wanka, A.: Separation theorems for oriented matroids. Discret. Math. 70(3), 303–310 (1988). https://doi.org/10.1016/0012-365X(88)90006-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Bachem, A., Wanka, A.: Euclidean intersection properties. J. Comb. Theory, Ser. B 47(1), 10–19 (1989). https://doi.org/10.1016/0095-8956(89)90061-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Balko, M., Fulek, R., Kynčl, J.: Crossing numbers and combinatorial characterization of Monotone Drawings of \(K_n\). Discret. Comput. Geom. 53(1), 107–143 (2014). https://doi.org/10.1007/s00454-014-9644-z

    Article  MATH  Google Scholar 

  12. Bárány, I., Shlosman, S.B., Szücs, A.: On a topological generalization of a theorem of Tverberg. J. Lond. Math. Soc. s2–23(1), 158–164 (1981). https://doi.org/10.1112/jlms/s2-23.1.158

    Article  MathSciNet  MATH  Google Scholar 

  13. Bárány, I.: A generalization of Carathéodory’s theorem. Discret. Math. 40(2), 141–152 (1982). https://doi.org/10.1016/0012-365X(82)90115-7

    Article  MATH  Google Scholar 

  14. Bárány, I., Soberón, P.: Tverberg’s theorem is 50 years old: a survey. Bull. Amer. Math. Soc. 55, 459–492 (2018). https://doi.org/10.1090/bull/1634

    Article  MathSciNet  MATH  Google Scholar 

  15. Barvinok, A.: A Course in Convexity, Graduate Studies in Mathematics, vol. 54. American Mathematical Society (2002). https://doi.org/10.1090/gsm/054

  16. Bergold, H., Felsner, S., Scheucher, M., Schröder, F., Steiner, R.: Topological Drawings meet Classical Theorems from Convex Geometry (2020). arXiv:2005.12568

  17. Björner, A., Las Vergnas, M., White, N., Sturmfels, B., Ziegler, G.M.: Oriented Matroids, Encyclopedia of Mathematics and Its Applications, vol. 46. Cambridge University Press, 2 edn. (1999). https://doi.org/10.1017/CBO9780511586507

  18. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discret. Comput. Geom. 48(2), 373–392 (2012). https://doi.org/10.1007/s00454-012-9417-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Felsner, S., Weil, H.: Sweeps, arrangements and signotopes. Discret. Appl. Math. 109(1), 67–94 (2001). https://doi.org/10.1016/S0166-218X(00)00232-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Frick, F., Soberón, P.: The topological Tverberg problem beyond prime powers (2020). arXiv:2005.05251

  21. Gioan, E.: Complete graph drawings up to triangle mutations. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 139–150. Springer, Heidelberg (2005). https://doi.org/10.1007/11604686_13

    Chapter  MATH  Google Scholar 

  22. Goaoc, X., Paták, P., Patáková, Z., Tancer, M., Wagner, U.: Bounding Helly numbers via Betti numbers. In: Loebl, M., Nešetřil, J., Thomas, R. (eds.) A Journey Through Discrete Mathematics, pp. 407–447. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44479-6_17

    Chapter  MATH  Google Scholar 

  23. Goodman, J.E., Pollack, R.: Helly-type theorems for pseudoline arrangements in \(\cal{P}^2\). J. Comb. Theory Ser. A 32(1), 1–19 (1982). https://doi.org/10.1016/0097-3165(82)90061-9

    Article  MATH  Google Scholar 

  24. Helly, E.: Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten. Monatshefte für Mathematik und Physik 37(1), 281–302 (1930). https://doi.org/10.1007/BF01696777

    Article  MathSciNet  MATH  Google Scholar 

  25. Holmsen, A.F.: The intersection of a matroid and an oriented matroid. Adv. Math. 290, 1–14 (2016). https://doi.org/10.1016/j.aim.2015.11.040

    Article  MathSciNet  MATH  Google Scholar 

  26. Holmsen, A.F., Pach, J., Tverberg, H.: Points surrounding the origin. Combinatorica 28(6), 633–644 (2008). https://doi.org/10.1007/s00493-008-2427-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Kalai, G.: Colorful Caratheodory Revisited (2009). http://gilkalai.wordpress.com/2009/03/15/colorful-caratheodory-revisited

  28. Kalai, G., Meshulam, R.: A topological colorful Helly theorem. Adv. Math. 191(2), 305–311 (2005). https://doi.org/10.1016/j.aim.2004.03.009

    Article  MathSciNet  MATH  Google Scholar 

  29. Keller, C., Smorodinsky, S., Tardos, G.: Improved bounds on the Hadwiger–Debrunner numbers. Isr. J. Math. 225(2), 925–945 (2018). https://doi.org/10.1007/s11856-018-1685-1

    Article  MathSciNet  MATH  Google Scholar 

  30. Kirchberger, P.: Über Tschebychefsche Annäherungsmethoden. Mathematische Annalen 57, 509–540 (1903)

    Article  MathSciNet  Google Scholar 

  31. Özaydin, M.: Equivariant maps for the symmetric group. Unpublished preprint, University of Wisconsin-Madison (1987). http://minds.wisconsin.edu/bitstream/handle/1793/63829/Ozaydin.pdf

  32. Roudneff, J.P.: Tverberg-type theorems for pseudoconfigurations of points in the plane. Eur. J. Comb. 9(2), 189–198 (1988). https://doi.org/10.1016/S0195-6698(88)80046-5

    Article  MathSciNet  MATH  Google Scholar 

  33. Scheucher, M., Schrezenmaier, H., Steiner, R.: A note on universal point sets for planar graphs. J. Graph Algorithm. Appl. 24(3), 247–267 (2020). https://doi.org/10.7155/jgaa.00529

    Article  MathSciNet  MATH  Google Scholar 

  34. Scheucher, M.: Two disjoint 5-holes in point sets. Comput. Geom. Theory Appl. 91(101670) (2020). https://doi.org/10.1016/j.comgeo.2020.101670

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Scheucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bergold, H., Felsner, S., Scheucher, M., Schröder, F., Steiner, R. (2020). Topological Drawings Meet Classical Theorems from Convex Geometry. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68766-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68765-6

  • Online ISBN: 978-3-030-68766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics