Abstract
In social networks, individuals’ decisions are strongly influenced by recommendations from their friends and acquaintances. The influence maximization (IM) problem asks to select a seed set of users that maximizes the influence spread, i.e., the expected number of users influenced through a stochastic diffusion process triggered by the seeds. In this paper, we present VAIM, a visual analytics system that supports users in analyzing the information diffusion process determined by different IM algorithms. By using VAIM one can: (i) simulate the information spread for a given seed set on a large network, (ii) analyze and compare the effectiveness of different seed sets, and (iii) modify the seed sets to improve the corresponding influence spread.
Research of WD, GL and FM partially supported by: (i) MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”, (ii) Dip. di Ingegneria - Università degli Studi di Perugia, grant RICBA19FM: “Modelli, algoritmi e sistemi per la visualizzazione di grafi e reti”. Research of AA and SM partially supported by TU Wien “Smart CT” research cluster.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arleo, A., Didimo, W., Liotta, G., Miksch, S., Montecchiani, F.: Vaim: Visual analytics for influence maximization. arXiv:2008.08821v1 [cs.SI] (2020). https://arxiv.org/abs/2008.08821
Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: Large graph visualizations using a distributed computing platform. Inf. Sci. 381, 124–141 (2017). https://doi.org/10.1016/j.ins.2016.11.012
Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: A distributed multilevel force-directed algorithm. IEEE Trans. Parallel Distrib. Syst. 30(4), 754–765 (2019). https://doi.org/10.1109/TPDS.2018.2869805
Arora, A., Galhotra, S., Ranu, S.: Debunking the myths of influence maximization: an in-depth benchmarking study. In: SIGMOD Conference, pp. 651–666. ACM (2017)
Cao, N., Lin, Y., Sun, X., Lazer, D., Liu, S., Qu, H.: Whisper: tracing the spatiotemporal process of information diffusion in real time. IEEE Trans. Vis. Comput. Graph. 18(12), 2649–2658 (2012)
Chen, S., et al.: D-Map: visual analysis of ego-centric information diffusion patterns in social media. In: VAST, pp. 41–50. IEEE Computer Society (2016)
Chen, S., Lin, L., Yuan, X.: Social media visual analytics. Comput. Graph. Forum 36(3), 563–587 (2017)
Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD, pp. 1029–1038. ACM (2010)
Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 199–208. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1557019.1557047
Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. SIGMOD Rec. 42(2), 17–28 (2013)
Harrower, M., Brewer, C.A.: Colorbrewer.org: an online tool for selecting colour schemes for maps. Cartographic J. 40(1), 27–37 (2003)
Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146. ACM (2003)
Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. Theory Comput. 11, 105–147 (2015). https://doi.org/10.4086/toc.2015.v011a004
Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 383–408. Chapman and Hall/CRC, Boca Raton (2013)
Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)
Li, Y., Fan, J., Wang, Y., Tan, K.: Influence maximization on social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)
Long, C., Wong, R.C.: Visual-VM: a social network visualization tool for viral marketing. In: ICDM Workshops, pp. 1223–1226. IEEE Computer Society (2014)
Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Processing and visualizing the data in tweets. SIGMOD Rec. 40(4), 21–27 (2011)
Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: TwitInfo: aggregating and visualizing microblogs for event exploration. In: CHI, pp. 227–236. ACM (2011)
Miksch, S., Aigner, W.: A matter of time: applying a data-users-tasks design triangle to visual analytics of time-oriented data. Comput. Graph. 38, 286–290 (2014)
Sun, G., Tang, T., Peng, T., Liang, R., Wu, Y.: Socialwave: visual analysis of spatio-temporal diffusion of information on social media. ACM TIST 9(2), 15:1–15:23 (2018)
Vallet, J., Kirchner, H., Pinaud, B., Melançon, G.: A visual analytics approach to compare propagation models in social networks. In: Rensink, A., Zambon, E. (eds.) Proceedings Graphs as Models, GaM@ETAPS 2015, London, UK, 11–12 April 2015. EPTCS, vol. 181, pp. 65–79 (2015). https://doi.org/10.4204/EPTCS.181.5
Vallet, J., Pinaud, B., Melançon, G.: Studying propagation dynamics in networks through rule-based modeling. In: Chen, M., Ebert, D.S., North, C. (eds.) 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014, Paris, France, 25–31 October 2014, pp. 281–282. IEEE Computer Society (2014). https://doi.org/10.1109/VAST.2014.7042530
Wu, Y., Liu, S., Yan, K., Liu, M., Wu, F.: OpinionFlow: visual analysis of opinion diffusion on social media. IEEE Trans. Vis. Comput. Graph. 20(12), 1763–1772 (2014)
Zhao, J., Cao, N., Wen, Z., Song, Y., Lin, Y., Collins, C.: #FluxFlow: visual analysis of anomalous information spreading on social media. IEEE Trans. Vis. Comput. Graph. 20(12), 1773–1782 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Arleo, A., Didimo, W., Liotta, G., Miksch, S., Montecchiani, F. (2020). VAIM: Visual Analytics for Influence Maximization. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-68766-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68765-6
Online ISBN: 978-3-030-68766-3
eBook Packages: Computer ScienceComputer Science (R0)