Skip to main content

Augmenting Leakage Detection Using Bootstrapping

  • Conference paper
  • First Online:
Constructive Side-Channel Analysis and Secure Design (COSADE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12244))

  • 506 Accesses

Abstract

Side-channel leakage detection methods based on statistical tests, such as t-test or \(\chi ^2\)-test, provide a high confidence in the presence of leakage with a large number of traces. However, practical limitations on testing time and equipment may set an upper-bound on the number of traces available, turning the number of traces into a limiting factor in side-channel leakage detection. We describe a statistical technique, based on statistical bootstrapping, that significantly improves the effectiveness of leakage detection using a limited set of traces. Bootstrapping generates additional sample sets from an initial set by assuming that it is representative of the entire population. The additional sample sets are then used to conduct additional leakage detection tests, and we show how to combine the results of these tests. The proposed technique, applied to side-channel leakage detection, can significantly reduce the number of traces required to detect leakage by one, or more orders of magnitude. Furthermore, for an existing measured sample set, the method can significantly increase the confidence of existing leakage hypotheses over a traditional (non-bootstrap) leakage detection test. This paper introduces the bootstrapping technique for leakage detection, applies it to three practical cases, and describes techniques for its efficient computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bache, F., Plump, C., Güneysu, T.: Confident leakage assessment—a side-channel evaluation framework based on confidence intervals. In: DATE 2018, pp. 1117–1122. IEEE (2018)

    Google Scholar 

  2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3_5

    Chapter  Google Scholar 

  3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  4. Bronchain, O., Schneider, T., Standaert, F.X.: Multi-tuple leakage detection and the dependent signal issue. IACR Transactions on Cryptographic Hardware and Embedded Systems 2, 318–345 (2019)

    Article  Google Scholar 

  5. Efron, B.: Bootstrap methods: another look at the jackknife. Annl. Stat. 7(1), 1–26 (1979)

    Article  MathSciNet  Google Scholar 

  6. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel resistance validation. NIST non-invasive attack testing workshop. 7, 115–136 (2011)

    Google Scholar 

  7. Hung, H.J., O’Neill, R.T., Bauer, P., Kohne, K.: The behavior of the p-value when the alternative hypothesis is true. Biometrics, 11–22 (1997)

    Google Scholar 

  8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  9. Mangard, S., Oswald, E., Standaert, F.X.: One for all-all for one: unifying standard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

    Article  Google Scholar 

  10. Moradi, A., Richter, B., Schneider, T., Standaert, F.X.: Leakage detection with the \(\chi ^2\)-test. IACR Trans. Cryptographic Hardware and Embedded Systems 1, 209–237 (2018)

    Article  Google Scholar 

  11. Pattengale, N.D., Alipour, M., Bininda-Emonds, O.R.P., Moret, B.M.E., Stamatakis, A.: How many bootstrap replicates are necessary? J. Comput. Biol. 17(3), 337–354 (2010)

    Article  MathSciNet  Google Scholar 

  12. Pebay, P.P.: Formulas for robust, one-pass parallel computation of covariances and arbitrary-order statistical moments. Tech. rep, Sandia National Laboratories (2008)

    Book  Google Scholar 

  13. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Fast leakage assessment. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 387–399. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_19

    Chapter  Google Scholar 

  14. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_25

    Chapter  Google Scholar 

  15. Standaert, F.-X.: How (Not) to use welch’s T-test in side-channel security evaluations. In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp. 65–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2_5

    Chapter  Google Scholar 

  16. Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic level: next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6_11

    Chapter  Google Scholar 

  17. Welford, B.: Note on a method for calculating corrected sums of squares and products. Technometrics 4(3), 419–420 (1962)

    Article  MathSciNet  Google Scholar 

  18. Zhang, L., Ding, A.A., Durvaux, F., Standaert, F.X., Fei, Y.: Towards sound and optimal leakage detection procedure. IACR Cryptology ePrint Archive 2017, 287 (2017)

    Google Scholar 

Download references

Acknowledgement

This research was supported in part by National Science Foundation Award 1617203. The authors would like to thank anonymous reviewers for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, Y., Tunstall, M., De Mulder, E., Kochepasov, A., Schaumont, P. (2021). Augmenting Leakage Detection Using Bootstrapping. In: Bertoni, G.M., Regazzoni, F. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2020. Lecture Notes in Computer Science(), vol 12244. Springer, Cham. https://doi.org/10.1007/978-3-030-68773-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68773-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68772-4

  • Online ISBN: 978-3-030-68773-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics