Abstract
In this paper, we propose to search for the best number of filters in the convolution layer of a convolutional neural network, we used a fuzzy logic system to find the most suitable parameters for the proposed case study. In addition to this we make use of the Fuzzy Gravitational Search Algorithm method to find the parameters of the fuzzy system memberships.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ashraf, R., M.A. Habib, M. Akram, M.A. Latif, M.S.A. Malik, M. Awais, S.H. Dar, T. Mahmood, M. Yasir, and Z. Abbas. 2020. Deep convolution neural network for big data medical image classification. IEEE Access 8: 105659–105670.
Bernal, E., O. Castillo, J. Soria, F. Valdez. 2020. Fuzzy galactic swarm optimization with dynamic adjustment of parameters based on fuzzy logic. SN Computer Science 1(1): 59.
Born, W. and C.J. Lowrance. 2018. Smoother robot control from convolutional neural networks using fuzzy logic. ICMLA, 695–700.
Carvajal, O., O. Castillo. 2020. Implementation of a fuzzy controller for an autonomous mobile robot in the PIC18F4550 microcontroller. Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine, 315–325.
Castillo, O., and P. Melin. 1998. A new fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems. In 1998 IEEE international conference on fuzzy systems (FUZZ-IEEE 1998) Proceedings. Volume 2, 1182–1187.
Castillo, O., and P. Melin. 2003. Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Applied Soft Computing 3 (4): 363–378.
Choi, H. 2017. CNN output optimization for more balanced classification. International Journal Fuzzy Logic and Intelligent Systems 17 (2): 98–106.
González, B., F. Valdez, P. Melin, and G. Prado-Arechiga. 2015a. Fuzzy logic in the gravitational search algorithm enhanced using fuzzy logic with dynamic alpha parameter value adaptation for the optimization of modular neural networks in echocardiogram recognition. Applied Soft Computing 37: 245–254.
González, B., F. Valdez, P. Melin, and G. Prado-Arechiga. 2015b. Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition. Expert Systems with Applications 42 (14): 5839–5847.
Hatamlou, A., S. Abdullah, and Z. Othman. 2011. Gravitational search algorithm with heuristic search for clustering problems. In conference data minimum optimaztion no. June, pp. 190–193.
Hernández, E., O. Castillo, J. Soria, 2020. Optimization of fuzzy controllers for autonomous mobile robots using the grey wolf optimizer. Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine, 289–299.
Karambakhsh, A., B. Sheng, P. Li, P. Yang, Y. Jung, D.D. Feng. 2020. Hybrid convolutional neural network for active 3D object recognition. IEEE Access 8: 70969–70980.
Kh-Madhloom, J., S.A. Diwan, and A.A. Zainab. 2020. Smile detection using convolutional neural network and fuzzy logic. Journal of Information Science and Engineering 36 (2): 269–278.
Lagunes, M.L., O. Castillo, F. Valdez, J. Soria. 2020. Comparison of fuzzy controller optimization with dynamic parameter adjustment based on of Type-1 and Type-2 Fuzzy logic. Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine, 47–56.
Le Cun, Y., B. Boser, J.S. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. 1990. Handwritten digit recognition with a backprop-agation neural network. In Advances in neural information processing systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, pp. 396–404.
Le Cun Jackel, L.D., B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, B. Le Cun, J. Denker, and D. Henderson. 1990. Handwritten digit recognition with a back-propagation network. Advances in Neural Information Processing Systems, pp. 396–404.
LeCun, Y., and Y. Bengio. 1998. Convolution Networks for Images, Speech, and Time-Series. Igarss 2014 (1): 1–5.
Mirjalili, S., S.Z. Mohd Hashim, and H. Moradian Sardroudi. 2012. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Application Mathematical Computer, 218(22): 11125–11137.
Nair, V. and G.E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings 27th international conference mathematical learning, no. 3, pp. 807–814.
Olivas, F., F. Valdez, P. Melin, A. Sombra, and O. Castillo. 2019. Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Information Sciences 476: 159–175.
Poma, Y., P. Melin C. González, G. Martinez. 2020. Optimal recognition model based on convolutional neural networks and fuzzy gravitational search algorithm method. https://doi.org/10.1007/978-3-030-34135-0_6.
Rashedi, E., H. Nezamabadi-pour, and S. Saryazdi. 2009. GSA: A gravitational search algorithm. Information Science (Ny) 179 (13): 2232–2248.
Rosenblatt, F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65: 386–408. https://doi.org/10.1037/h0042519.
Sánchez, D., P. Melin, J. Carpio, and H. Puga. 2017. Comparison of optimization techniques for modular neural networks applied to human recognition. In Nature-Inspired Design of Hybrid Intelligent Systems (pp. 225–241). Springer, Cham.
Sánchez, D., and P. Melin. 2014. Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Engineering Applications of Artificial Intelligence 27: 41–56.
Sanchez, M.A., O. Castillo, J.R. Castro, and P. Melin. 2014. Fuzzy granular gravitational clustering algorithm for multivariate data. Information Sciences 279: 498–511.
Sánchez, D., P. Melin, and O. Castillo. 2017b. Optimization of modular granular neural networks using a firefly algorithm for human recognition. Engineering Applications of Artificial Intelligence 64: 172–186.
Sombra, A., F. Valdez, P. Melin, and O. Castillo. 2013. A new gravitational search algorithm using fuzzy logic to parameter adaptation. In 2013 IEEE Congress on Evolutionary Computation no. 3, pp. 1068–1074.
Venkatesan, R. and B. Li. 2017. Convolutional neural networks in visual computing: A concise guide. CRC Press.
Verma, O.P. and R. Sharma. 2012. Newtonian gravitational edge detection using gravitational search algorithm. In International conference communication system networks technology, pp. 184–188.
Yang, J., K. Yu, Y. Gong, and T. H. Beckman. 2009. Linear spatial pyramid matching using sparse coding for image classification. IEEE computer society conference on computer vision and pattern recognition, pp. 1794–1801.
Zangeneh, E., M. Rahmati, Y. Mohsenzadeh. 2020. Low resolution face recognition using a two-branch deep convolutional neural network architecture. Expert Systems Application, 139.
Acknowledgements
We thank sour sponsor CONACYT & the Tijuana Institute of Technology for the financial support provided with the scholarship number 816488.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Poma, Y., Melin, P. (2021). Estimation of the Number of Filters in the Convolution Layers of a Convolutional Neural Network Using a Fuzzy Logic System. In: Castillo, O., Melin, P. (eds) Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-68776-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-68776-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68775-5
Online ISBN: 978-3-030-68776-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)