Skip to main content

Estimation of the Number of Filters in the Convolution Layers of a Convolutional Neural Network Using a Fuzzy Logic System

  • Chapter
  • First Online:
Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 940))

Abstract

In this paper, we propose to search for the best number of filters in the convolution layer of a convolutional neural network, we used a fuzzy logic system to find the most suitable parameters for the proposed case study. In addition to this we make use of the Fuzzy Gravitational Search Algorithm method to find the parameters of the fuzzy system memberships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashraf, R., M.A. Habib, M. Akram, M.A. Latif, M.S.A. Malik, M. Awais, S.H. Dar, T. Mahmood, M. Yasir, and Z. Abbas. 2020. Deep convolution neural network for big data medical image classification. IEEE Access 8: 105659–105670.

    Article  Google Scholar 

  • Bernal, E., O. Castillo, J. Soria, F. Valdez. 2020. Fuzzy galactic swarm optimization with dynamic adjustment of parameters based on fuzzy logic. SN Computer Science 1(1): 59.

    Google Scholar 

  • Born, W. and C.J. Lowrance. 2018. Smoother robot control from convolutional neural networks using fuzzy logic. ICMLA, 695–700.

    Google Scholar 

  • Carvajal, O., O. Castillo. 2020. Implementation of a fuzzy controller for an autonomous mobile robot in the PIC18F4550 microcontroller. Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine, 315–325.

    Google Scholar 

  • Castillo, O., and P. Melin. 1998. A new fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems. In 1998 IEEE international conference on fuzzy systems (FUZZ-IEEE 1998) Proceedings. Volume 2, 1182–1187.

    Google Scholar 

  • Castillo, O., and P. Melin. 2003. Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Applied Soft Computing 3 (4): 363–378.

    Article  Google Scholar 

  • Choi, H. 2017. CNN output optimization for more balanced classification. International Journal Fuzzy Logic and Intelligent Systems 17 (2): 98–106.

    Article  Google Scholar 

  • González, B., F. Valdez, P. Melin, and G. Prado-Arechiga. 2015a. Fuzzy logic in the gravitational search algorithm enhanced using fuzzy logic with dynamic alpha parameter value adaptation for the optimization of modular neural networks in echocardiogram recognition. Applied Soft Computing 37: 245–254.

    Article  Google Scholar 

  • González, B., F. Valdez, P. Melin, and G. Prado-Arechiga. 2015b. Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition. Expert Systems with Applications 42 (14): 5839–5847.

    Article  Google Scholar 

  • Hatamlou, A., S. Abdullah, and Z. Othman. 2011. Gravitational search algorithm with heuristic search for clustering problems. In conference data minimum optimaztion no. June, pp. 190–193.

    Google Scholar 

  • Hernández, E., O. Castillo, J. Soria, 2020. Optimization of fuzzy controllers for autonomous mobile robots using the grey wolf optimizer. Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine, 289–299.

    Google Scholar 

  • Karambakhsh, A., B. Sheng, P. Li, P. Yang, Y. Jung, D.D. Feng. 2020. Hybrid convolutional neural network for active 3D object recognition. IEEE Access 8: 70969–70980.

    Google Scholar 

  • Kh-Madhloom, J., S.A. Diwan, and A.A. Zainab. 2020. Smile detection using convolutional neural network and fuzzy logic. Journal of Information Science and Engineering 36 (2): 269–278.

    Google Scholar 

  • Lagunes, M.L., O. Castillo, F. Valdez, J. Soria. 2020. Comparison of fuzzy controller optimization with dynamic parameter adjustment based on of Type-1 and Type-2 Fuzzy logic. Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine, 47–56.

    Google Scholar 

  • Le Cun, Y., B. Boser, J.S. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. 1990. Handwritten digit recognition with a backprop-agation neural network. In Advances in neural information processing systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, pp. 396–404.

    Google Scholar 

  • Le Cun Jackel, L.D., B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, B. Le Cun, J. Denker, and D. Henderson. 1990. Handwritten digit recognition with a back-propagation network. Advances in Neural Information Processing Systems, pp. 396–404.

    Google Scholar 

  • LeCun, Y., and Y. Bengio. 1998. Convolution Networks for Images, Speech, and Time-Series. Igarss 2014 (1): 1–5.

    Google Scholar 

  • Mirjalili, S., S.Z. Mohd Hashim, and H. Moradian Sardroudi. 2012. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Application Mathematical Computer, 218(22): 11125–11137.

    Google Scholar 

  • Nair, V. and G.E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings 27th international conference mathematical learning, no. 3, pp. 807–814.

    Google Scholar 

  • Olivas, F., F. Valdez, P. Melin, A. Sombra, and O. Castillo. 2019. Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Information Sciences 476: 159–175.

    Article  Google Scholar 

  • Poma, Y., P. Melin C. González, G. Martinez. 2020. Optimal recognition model based on convolutional neural networks and fuzzy gravitational search algorithm method. https://doi.org/10.1007/978-3-030-34135-0_6.

  • Rashedi, E., H. Nezamabadi-pour, and S. Saryazdi. 2009. GSA: A gravitational search algorithm. Information Science (Ny) 179 (13): 2232–2248.

    Article  Google Scholar 

  • Rosenblatt, F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65: 386–408. https://doi.org/10.1037/h0042519.

    Article  Google Scholar 

  • Sánchez, D., P. Melin, J. Carpio, and H. Puga. 2017. Comparison of optimization techniques for modular neural networks applied to human recognition. In Nature-Inspired Design of Hybrid Intelligent Systems (pp. 225–241). Springer, Cham.

    Google Scholar 

  • Sánchez, D., and P. Melin. 2014. Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Engineering Applications of Artificial Intelligence 27: 41–56.

    Article  Google Scholar 

  • Sanchez, M.A., O. Castillo, J.R. Castro, and P. Melin. 2014. Fuzzy granular gravitational clustering algorithm for multivariate data. Information Sciences 279: 498–511.

    Article  MathSciNet  Google Scholar 

  • Sánchez, D., P. Melin, and O. Castillo. 2017b. Optimization of modular granular neural networks using a firefly algorithm for human recognition. Engineering Applications of Artificial Intelligence 64: 172–186.

    Article  Google Scholar 

  • Sombra, A., F. Valdez, P. Melin, and O. Castillo. 2013. A new gravitational search algorithm using fuzzy logic to parameter adaptation. In 2013 IEEE Congress on Evolutionary Computation no. 3, pp. 1068–1074.

    Google Scholar 

  • Venkatesan, R. and B. Li. 2017. Convolutional neural networks in visual computing: A concise guide. CRC Press.

    Google Scholar 

  • Verma, O.P. and R. Sharma. 2012. Newtonian gravitational edge detection using gravitational search algorithm. In International conference communication system networks technology, pp. 184–188.

    Google Scholar 

  • Yang, J., K. Yu, Y. Gong, and T. H. Beckman. 2009. Linear spatial pyramid matching using sparse coding for image classification. IEEE computer society conference on computer vision and pattern recognition, pp. 1794–1801.

    Google Scholar 

  • Zangeneh, E., M. Rahmati, Y. Mohsenzadeh. 2020. Low resolution face recognition using a two-branch deep convolutional neural network architecture. Expert Systems Application, 139.

    Google Scholar 

Download references

Acknowledgements

We thank sour sponsor CONACYT & the Tijuana Institute of Technology for the financial support provided with the scholarship number 816488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poma, Y., Melin, P. (2021). Estimation of the Number of Filters in the Convolution Layers of a Convolutional Neural Network Using a Fuzzy Logic System. In: Castillo, O., Melin, P. (eds) Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-68776-2_1

Download citation

Publish with us

Policies and ethics