Abstract
These days, with the current situation we are experiencing worldwide due to the pandemic, it is of utmost importance to know our state of health, speaking more specifically of our cardiovascular health. Soft computing can be used by medical experts as a powerful tool to help and facilitate providing a diagnosis of our state of health. The objective of this work is to create a modular neural network to obtain the risk diagnosis that a patient has in developing a cardiovascular event in a period of 10 years likewise, find the heart age. In order to provide this information, a series of risk factors will be given as input to each of the modules, such as age, gender, body mass index, systolic pressure, if the patient is diabetic, if the patient smokes, if he/she is under hypertension treatment. Each module is optimized with two bio-inspired algorithms to test its performance and thereby obtain the best results to provide an accurate diagnosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
American Heart Association. 2015. [Online]. Available: http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/High-Blood-Pressure-or-Hypertension_UCM_002020_SubHomePage.jsp. Accessed 15 Oct 2018.
Bakris, G.L., and M.J.B.T.-H.A.C. to B.H.D. (Third E. Sorrentino, Eds., “Braunwald’s Heart Disease Family of Books,” Elsevier, 2018, pp. xv–xviii.
Balasaraswathi, V.R., M. Sugumaran, and Y. Hamid. 2017. Feature Selection Techniques for Intrusion Detection using Non-Bio-Inspired and Bio-Inspired Optimization Algorithms. Journal of Communications and Information Networks 2 (4): 107–119.
Carretero, O.A., and S. Oparil. 2000. Essential Hypertension. Circulation 101 (3): 329–335.
Castillo, O., P. Melin. 1998. A new fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems. 1998 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1998) Proceedings. Volume 2, 1182–1187.
Castillo, O., and P. Melin. 2003. Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Applied Soft Computing 3 (4): 363–378.
D’Agostino, R.B., et al. 2008. General cardiovascular risk profile for use in primary care: the framingham heart study. Circulation 117: 743–754.
Framingham Heart Study. 2019. [Online]. Available: https://www.framinghamheartstudy.org/risk-functions/hypertension/index.php. Accessed 15 Jul 2019.
González-Briones, L., J. Prieto, F. De La Prieta, E. Herrera-Viedma, and J.M. Corchado. 2018. Energy optimization using a case-based reasoning strategy. Sensors 18 (3): 1–27.
Haupt, R.L., and S.E. Haupt. 2004. Practical genetic algorithms, Second. New Jersey: A Wiley-Interscience publication.
Lagunes, M.L., O. Castillo, F. Valdez, and J. Soria. 2020. Comparison of fuzzy controller optimization with dynamic parameter adjustment based on of Type-1 and Type-2 Fuzzy Logic BT—hybrid intelligent systems in control, pattern recognition and medicine. O. Castillo and P. Melin, Eds. Cham: Springer International Publishing, pp. 47–56.
Ma, L., C. Ma, Y. Liu, and X. Wang. 2019. Thyroid diagnosis from SPECT images using convolutional neural network with optimization. Computational Intelligence and Neuroscience 2019: 6212759.
Melin, P., G. Prado-Arechiga, I. Miramontes, and M. Medina-Hernandez. 2016. Hybrid intelligent model based on modular neural network and fuzzy logic for hypertension risk diagnosis. Journal of Hypertension 34: e153.
Melin, P., I. Miramontes, and G. Prado-Arechiga. 2018. A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis. Expert Systems with Applications 107: 146–164.
Melin, P., G. Prado-Arechiga, I. Miramontes, and J.C. Guzmán. 2019. Hypertension diagnosis with a soft computing model using a graphical user interface. Journal of Hypertension 37: e233.
Meng, X.-B., X.Z. Gao, L. Lu, Y. Liu, and H. Zhang. 2016. A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence 28 (4): 673–687.
Miramontes, I., C.J. Guzman, P. Melin, and G. Prado-Arechiga. 2018. Optimal design of interval Type-2 fuzzy heart rate level classification systems using the bird swarm algorithm. Algorithms, 11(12).
Miramontes, I., P. Melin, and G. Prado-Arechiga. 2020. Comparative study of bio-inspired algorithms applied in the optimization of fuzzy systems. BT—Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine, pp. 219–231.
Nasser, I.M., and S.S. Abu-Naser. 2019. Lung cancer detection using artificial neural network. International Journal of Engineering and Information Systems 3 (3): 17–23.
Papademetriou, V., E.A. Andreadis, and C. Geladari. 2019. Management of hypertension. Cham: Springer International Publishing AG.
Paul, M., et al. 2019. Measurement of blood pressure in humans: A scientific statement from the american heart association. Hypertension 73 (5): e35–e66.
Poma, Y., P. Melin, C. González, and G. Martinez. 2020. Optimization of Convolutional Neural Networks Using the Fuzzy Gravitational Search Algorithm. Journal of Automation, Mobile Robotics and Intelligent Systems 14: 109–120.
Raghavendra, U., H. Fujita, S.V. Bhandary, A. Gudigar, J.H. Tan, and U.R. Acharya. 2018. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Information Science (Ny) 441: 41–49.
N.S. El_Jerjawi and S. S. Abu-Naser. 2018. Diabetes prediction using artificial neural network. International Journal of Advanced Science and Technology, vol. 121.
Sánchez, D., P. Melin, J.M.C. Valadez, and H. Puga. 2017. Comparison of optimization techniques for modular neural networks applied to human recognition. In Nature-Inspired Design of Hybrid Intelligent Systems, pp. 225–241.
Sánchez, D., P. Melin, J. Carpio, and H. Puga. 2017. Comparison of optimization techniques for modular neural networks applied to human recognition. In Nature-Inspired Design of Hybrid Intelligent Systems (pp. 225–241). Springer, Cham.
Sánchez, D., and P. Melin. 2014. Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Engineering Applications of Artificial Intelligence 27: 41–56.
Sanchez, M.A., O. Castillo, J.R. Castro, and P. Melin. 2014. Fuzzy granular gravitational clustering algorithm for multivariate data. Information Sciences 279: 498–511.
Sánchez, D., P. Melin, and O. Castillo. 2017c. Optimization of modular granular neural networks using a firefly algorithm for human recognition. Engineering Applications of Artificial Intelligence 64: 172–186.
Sánchez, D., P. Melin, and O. Castillo. 2020. Comparison of particle swarm optimization variants with fuzzy dynamic parameter adaptation for modular granular neural networks for human recognition. Journal of Intelligent & Fuzzy Systems 38 (3): 3229–3252.
Sotudian, S., M.H.F. Zarandi, and I.B. Turksen. 2016. From Type-I to Type-II fuzzy system modeling for diagnosis of hepatitis. Journal of Computing and Information 10 (7): 1280–1288.
Teo, K.L., H.-F. Wang, and C. Wu. 2014. Optimization in Industrial Systems. Mathematical Problems in Engineering 2014: 824539.
World Healt Organization. 2017. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
British Heart Fundation. [Online]. Available: https://www.bhf.org.uk/informationsupport/risk-factors/check-your-heart-age.
Yang, X.S., M. Karamanoglu, and X. He. 2014. Flower pollination algorithm: A novel approach for multiobjective optimization. Optimization and Engineering 46 (9): 1222–1237.
Zanchetti, A., et al. 2018. 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal 39 (33): 3021–3104.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Miramontes, I., Melin, P., Carvajal, O., Prado-Arechiga, G. (2021). Optimization of Modular Neural Networks for the Diagnosis of Cardiovascular Risk. In: Castillo, O., Melin, P. (eds) Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-68776-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-68776-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68775-5
Online ISBN: 978-3-030-68776-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)